The Graduate School

MOLECULAR PHYLOGENETIC ANALYSIS OF GRIFOLA FRONDOSA (MAITAKE) AND RELATED SPECIES AND THE INFLUENCE OF SELECTED NUTRIENT SUPPLEMENTS ON MUSHROOM YIELD

A Thesis in
Plant Pathology
by
Qing Shen
© 2001 Qing Shen
Submitted in Partial Fulfillment
of the Requirements
for the Degree of
Doctor of Philosophy

May 2001

We approve the thesis of Qing Shen.

Date of Signature

Daniel J. Royse
Professor of Plant Pathology
Thesis Advisor
Chair of Committee

John E. Ayers
Professor of Plant Pathology
C. Peter Romaine

Professor of Plant Pathology

David M. Geiser
Assistant Professor of Plant Pathology

David R. Huff
Associate Professor of Turfgrass Breeding

Elwin L. Stewart
Professor of Plant Pathology
Head of the Department of Plant Pathology

Abstract

Grifola frondosa (Dickson: Fr.) S.F.Gray (maitake) is a choice edible mushroom and has been marketed in Asia in recent years for medicinal use. Production and consumption of this mushroom is increasing rapidly in the world. There was a 41 -fold increase from 1988-97 worldwide and a 38% increase in the United States (1999-2000).

While this mushroom has enjoyed increased popularity among consumers, scientists know little about the genetics and life history of this species. I, therefore, sought to quantify genetic diversity among available isolates and to establish a taxonomic position for this mushroom and some of its allies. To accomplish these goals, the internal transcribed spacers 1 and 2 (ITS1 and 2) and 5.8 S regions of the nuclear ribosomal DNA (rDNA) transcriptional unit and a portion of the β-tubulin gene were PCR-amplified. Then, rDNA and β tubulin amplicons from 52 isolates of Grifola frondosa, one isolate of Grifola sordulenta, Polyporus umbellatus and Meripilus giganteus were sequenced. In both rDNA and β-tubulin sequences, nucleotide variation within isolates of G. frondosa (5.4\% in rDNA and 12.2\% in β-tubulin) was relatively small compared to that observed between isolates of G. frondosa and G. sordulenta (14.3% in rDNA and 30.2% in β-tubulin). Molecular phylogenetic analysis of rDNA, β-tubulin and

combined sequences revealed two major clades within G. frondosa. Clade I (U.S. clade) included all the U.S. isolates, while Clade II (Asian clade) consisted only of Asian isolates. The major commercial isolate (unknown origin) used on most U.S. mushroom farms grouped within the Asian clade and is apparently of Asian decent. Based on partial β-tubulin sequence, phylogenetic analyses indicated that G. frondosa and its allies (G. sordulenta and P. umbellatus) share a common ancestor.

To assist with the demand of commercial growers for isolates with improved yield and quality characteristics, I evaluated 23 genotypes of Grifola frondosa for crop cycle time, biological efficiency (BE; ratio of fresh weight of mushroom harvested to dry weight of substrate x 100) and quality. Significant differences among lines were found for these parameters when mushrooms were produced on nutrient supplemented sawdust substrates. Four isolates (WC828, M036, M037 and M040) were found to have the most consistent and highest BEs $(38.5 \%, 39.5 \%, 35.8 \%$ and 38.9%, respectively) and quality (1.2, 1.3, 1.4 and 1.2, respectively).

In order to determine the effects of nutrient supplements on mushroom crop cycle time, BE and quality, different combinations of wheat bran, rye, millet and corn meal were evaluated. Combinations of two or three nutrients selected from wheat bran, millet and rye were found to be the most desirable formulations with short crop cycle, high quality and high BE.

Significant differences for crop cycle times, BEs and quality also were found when different combinations of wheat bran, rye and millet at different levels ($10 \%, 20 \%$ and 30% of total dry substrate wt) were used. The combination of 10% wheat bran, 10% millet and 10% rye (BE 47.1%, quality 1.8 and crop cycle 12 weeks) and the combination of 10% wheat bran plus 20% rye (BE 44%, quality 1.7 and crop cycle 10 weeks) gave the most consistent yields and basidiome quality over time.

Table of Contents

List of Figures X
List of Tables xiv
Acknowledgements xvii
Chapter 1: Introduction 1
1.1 Cultivation of Grifola frondosa 1
1.1.1 World production 1
1.1.2 Nutrition and physiology 2
1.1.3 Methods of commercial production 2
1.2 Geographic distribution and host range of Grifola frondosa 4
1.3 Nutritional components 5
1.4 Medicinal value 6
1.4.1 Anti-tumor polysaccharides 6
1.4.2 Lectins 7
1.5 Morphology and classical taxonomy 8
1.6 Taxonomic discrepancies 10
1.6.1 Family level 10
1.6.2 Genus level 10
1.6.3 Species level 11
1.7 Molecular systematics 14
1.7.1 Ribosomal RNA genes 14
1.7.2 Molecular phylogenetic studies with multiple genes 16
1.7.3 β-tubulin genes 17
1.8 Grifola genome 18
Chapter 2: Genetic variation present in ITS-1, ITS-2 and 5.8 S of the ribosomalDNA repeat and in selected regions of the β-tubulin gene for Grifola frondosaand related species19
2.1 Introduction 19
2.2 Materials and Methods 20
2.2.1 Cultures 20
2.2.2 DNA extraction 23
2.2.3 Primer design 23
2.2.4 PCR amplification and sequencing of rDNA and β-tubulin 27
2.2.4.1 rDNA 27
2.2.4.2 β-tubulin 27
2.2.5 Sequence data analysis 28
2.2.6 Database search 29
2.3 Results 29
2.3.1 Analysis of ITS sequences 29
2.3.2 Analysis of partial β-tubulin sequences 31
2.4 Discussion 33
Chapter 3: Phylogenetic analysis of Grifola frondosa and its related species based on ITS-1, ITS-2 and 5.8S rDNA and partial β-tubulin gene sequences 35
3.1 Introduction 35
3.2 Materials and Methods 37
3.2.1 Cultures 37
3.2.2 DNA extraction 39
3.2.3 PCR amplification and sequencing 39
3.2.4 Sequence data analysis 41
3.3 Results 42
3.3.1 Phylogenetic relationship within Grifola frondosa 42
3.3.1.1 Analysis of ITS sequence data 42
3.3.1.2 Analysis of partial β-tubulin sequence data 46
3.3.1.3 Analysis of combined rDNA and partial β-tubulin gene sequence data 50
3.3.2 Phylogenetic relationship among Grifola frondosa and allies 53
3.4 Discussion 56
3.4.1 Relationships within Grifola frondosa 56
3.4.2 Relationships between Grifola frondosa and its allies 57
3.4.3 Molecular phylogenetic analysis based on combined gene sequences 59
3.4.4 Phylogeny of commercial mushroom cultivars 60
Chapter 4: Effects of germplasm and selected nutrient supplements on mushroom yield 61
4.1 Introduction 61
4.2 Materials and Methods 64
4.2.1 Substrates and preparation 64
4.2.2 Genotypes 65
4.2.3 Spawn, spawn run, primordial development and fruitbody development 68
4.2.4 Experimental design 69
4.2.5 Harvesting and determination of BE and quality 74
4.3 Results 75
4.3.1 Effects of germplasm on crop cycle time 75
4.3.2 Effects of germplasm on quality and yield 79
4.3.3 Effects of nutrient supplements on crop cycle time 81
4.3.4 Effects of nutrient supplements on quality and yield 82
4.3.5 Effects of different levels of selected nutrient supplements on crop cycle time 84
4.3.6 Effects of different levels of selected nutrient supplements on quality and yield 87
4.3.6.1 Wheat bran and millet 87
4.3.6.2 Wheat bran and rye 88
4.3.6.3 Wheat bran, millet and rye at 20% level 89
4.3.6.4 Wheat bran, millet, and rye at the 30% level 90
4.4 Discussion 92
Chapter 5: General Conclusions 96
Appendix A: Sequence alignment of ITS-1, 5.8 S, and ITS-2 rDNA sequences from isolates of Grifola frondosa and G. sordulenta 99
Appendix B: Sequence alignment of ITS-1, 5.8 S, and ITS-2 from isolates of Grifola frondosa and related species 108
Appendix C: Blast search result for isolate WC484 111
Appendix D: Sequence alignment of partial β-tubulin gene sequences from isolates of Grifola frondosa and G. sordulenta 112
Appendix E: Sequence alignment of partial β-tubulin gene sequences from isolates of Grifola frondosa and related species 121
Appendix F: Results of genotype and nutrient experiments descripted in Chapter 4. 123
Literature Cited 131

List of Figures

Figure 1.1. World production of Grifola frondosa (maitake) from 1981 through 1997.. .. 2

Figure 1.2. Morphology of Grifola frondosa (maitake) ... 8
Figure 1.3. Common gene arrangement within a eukaryotic rDNA unit.............. 16
Figure 1.4. β-tubulin gene structure of Schizophyllum commune (Russo et al. 1992).. 17

Figure 1.5. Schematic structure of Neurospora crassa β-tubulin gene (Orbach et al. 1986).. ... 17

Figure 2.1. Locations (a) and sequences (b) of 13 primers according to the Schizophyllum commune β-tubulin gene sequence reported by Russo et al. (1992).

25
Figure 2.2. PCR amplification products by primer pairs BT1.1/B34R (b) and B43F/B41R (c) corresponding to β-tubulin gene sequence (a) reported by Russo et al. (1992) from seven isolates of Grifola frondosa, one G. sordulenta G01 and Polyporus umbellatus G02. Isolate numbers are listed above each lane... 26

Figure 2.3. Locations of the primers for amplification of ITS-1, ITS-2 and 5.8 s rDNA gene regions of the rDNA repeat. ... 27
Figure 2.4. Locations of primer pairs (BTG5F/BTG8R and BT1.1/B34R) and the size ($\sim 680 \mathrm{bp}$) of amplicons for amplification of portions of the β-tubulin gene. 28
Figure 2.5. Primordium of WC484 grown on sawdust substrates....................... 34

Figure 3.1. Locations of the primers for amplification of ITS-1, ITS-2 and 5.8 s rDNA gene regions of the rDNA repeat. .. 40
Figure 3.2. Locations of primers used for PCR-amplification of the β-tubulin gene in Grifola frondosa, G. sordulenta (G01), Polyporus umbellatus (G02) and Ganoderma lucidium. .. 41

Figure 3.3. Phylogenetic analysis of 51 Grifola frondosa isolates based on rDNA ITS sequences using the neighbor-joining method with distance analysis calculated by the Kimura 2-parameter model. 44
Figure 3.4. Maximum parsimony (MP) analysis of rDNA ITS sequences of Grifola frondosa isolates. ... 45

> Figure 3.5 . Phylogenetic analysis of 51 Grifola frondosa isolates based on partial β-tubulin gene sequences using the neighbor-joining method with distance analysis calculated by the Kimura 2-parameter model................................. 48
Figure 3.6. Maximum parsimony (MP) analysis of partial β-tubulin gene sequences of 51 Grifola frondosa isolates 49
Figure 3.7. Phylogenetic analysis of 51 Grifola frondosa isolates based on a combination of rDNA and partial β-tubulin gene sequences using the neighbor-joining method with distance analysis calculated by the Kimura 2- parameter model 51
Figure 3.8. Maximum parsimony (MP) analysis of combined rDNA and partial β - tubulin gene sequences of 51 Grifola frondosa isolates. 52
Figure 3.9. Phylogenetic analysis of Grifola frondosa and its allies based on partial β-tubulin gene sequences using the neighbor-joining method with distance analysis calculated by the Kimura 2-parameter model 54
Figure 3.10. Maximum parsimony (MP) analysis of partial β-tubulin gene sequences of eight Grifola frondosa isolates and its allies 55
Figure 3.11. Basidiomes of M. giganteus formed on sawdust substrate 57

Figure 4.1. Percentage increases of world production of maitake (Grifola frondosa), shiitake (Lentinula edodes), button (Agaricus bisporus) and all mushrooms during various periods from 1981 to 1997. (Source: Chang 1999)62

Figure 4.2. Cultivated Grifola frondosa (maitake) emerging from nutrient supplemented sawdust contained in polypropylene bags.62

Figure 4.3. The neighbor-joining (NJ) tree containing 23 Grifola frondosa isolates selected for genotype selection experiments based on combined rDNA and partial β-tubulin gene sequences. 67

Figure 4.4. Taped polypropylene bags with basidiomes developing from substrate directly under holes cut in bags. 68

Figure 4.5. Phylogenetic relationships of 23 Grifola frondosa isolates selected for fruiting trials. Phylogenies are based on combined rDNA and partial β tubulin gene sequences. 77

Figure 4.6. Summary of crop cycle time (wk) showing spawn run time and primordia and fruitbody development of 11 isolates of Grifola frondosa grown on sawdust substrate supplemented with 25% nutrient at The Mushroom Research Center (Experiment \#1 and \#4) 78

Figure 4.7. Graphic summary of means of BEs (left) and quality (right) of combined data of two crops of Grifola frondosa to determine the effect of three genotypes (Experiment \#1).

79
Figure 4.8. Graphic summary of means of BEs (left) and quality (right) of two crops of Grifola frondosa (WC828) to determine the effect of seven genotypes (Experiment \#4).
Figure 4.9. Graphic summary (15 treatments) of crop cycle time of Grifola frondosa (WC828) as influenced by selected nutrient supplements (total 20% of substrate) used alone or in various combinations (Experiment \#5). 82

Figure 4.10. Graphic summary (12 out of 15 total treatments) of means of BEs (top) and quality (below) of combined data of two crops of Grifola frondosa (WC828) to determine the effect of selected nutrient supplements (total 20\% of substrate) used alone or in various combinations (Experiment \#5).

83
Figure 4.11. Graphic summary (5 treatments) of crop cycle time of Grifola frondosa (WC828) as influenced by 20\% (Experiment \#7) (top) and 30\% (Experiment \#8) (below) levels of wheat bran and millet used alone or in various combinations

84
Figure 4.12. Graphic summary (5 treatments) of crop cycle time of Grifola frondosa (WC828) as influenced by 20\% (Experiment \#10) (top) and 30\% (Experiment \#11) (below) levels of wheat bran and rye used alone or in various combinations. 85

Figure 4.13. Graphic summary (10 treatments) of crop cycle time of Grifola frondosa (WC828) as influenced by 20\% (Experiment \#12) (top) and 30\% (Experiment \#13) (below) levels of wheat bran, millet and rye used alone or in various combinations.

Figure 4.14. Graphic summary (5 treatments) of means of BEs (left) and quality (right) of Grifola frondosa (WC828) to determine 20\% (Experiment \#7) and 30% (Experiment \#8) levels of wheat bran and millet used alone or in various combinations. 87

Figure 4.15. Graphic summary (5 treatments) of means of BEs (left) and quality (right) of Grifola frondosa (WC828) to determine 20\% (Experiment \#10) and 30\% (Experiment \#11) levels of wheat bran and rye used alone or in various combinations.

88
Figure 4.16. Graphic summary (6 out of 10 total treatments) of means of BEs (left) and quality (right) of two crops of Grifola frondosa (WC828) to determine the effect of 20% wheat bran, millet and rye used alone or in various combinations (Experiment \#12) . 90
Figure 4.17. Graphic summary (9 out of 10 total treatments) of means of BEs (left) and quality (right) of two crops of Grifola frondosa (WC828) to
determine the effect of 30% of wheat bran, millet and rye used alone or in various combinations (Experiment \#13). ... 92

List of Tables

Table 1.1. Nutritional components of basidiomes of Grifola frondosa (Imazeki and Hong 1989) 5
Table 2.1. List of species, isolate code, source, geographic origin, substrate and locality of Grifola frondosa and related species used for this study 21
Table 2.2. Combinations (15) of primer (13) pairs and their PCR amplification sizes in the Schizophyllum commune β-tubulin sequence tested for amplification in eight isolates of Grifola frondosa, G. sordulenta and Polyporus umbellatus. 25
Table 2.3. Site variation within the ITS-1, 5.8 S, and ITS-2 gene region of Grifola frondosa and its allies 30
Table 2.4. Site variation within the partial β-tubulin gene region of Grifola and its allies. 33
Table 3.1. List of species, isolate code, source, geographic origin, substrate and locality of Grifola frondosa and related species used for this study 37
Table 3.2. Morphological characters or traits of Grifola frondosa, Meripilus giganteus, Polyporus umbellatus and Grifola sordulenta. 58
Table 3.3. Summary of sequence alignments of rDNA, β-tubulin and combined datasets for Grifola frondosa. 59
Table 4.1. Isolates and geographic origin of Grifola frondosa (maitake) used for genotype selection experiments. 66
Table 4.2. Description of experiments performed to determine effects of genotypes and nutrient supplements on crop cycle time and mushroom yield and quality 69
Table 4.3. Simplex centroid mixture design listing treatment numbers and supplements added to 79.8% oak sawdust plus 0.2% gypsum $\left(\mathrm{CaSO}_{4}\right)$ used for production performance of isolate WC828 of Grifola frondosa (Experiment \#5). 71
Table 4.4. Treatment numbers and nutrient mixtures for production of Grifola frondosa (WC828) on oak sawdust (89.8\%) and gypsum (0.2\%) at the Mushroom Research Center (Experiment \#6). 72

Table 4.5. Treatment numbers and nutrient mixtures for production of Grifola
frondosa (WC828) on oak sawdust (79.8\%) and gypsum (0.2\%) at the
Mushroom Research Center (Experiment \#7)....................................... 72
Table 4.6. Treatment numbers and nutrient mixtures for production of Grifola frondosa (WC828) on oak sawdust (69.8\%) and gypsum (0.2\%) at the Mushroom Research Center (Experiment \#8)

72
Table 4.7. Treatment numbers and nutrient mixtures for production of Grifola frondosa (WC828) on oak sawdust (89.8\%) and gypsum (0.2\%) at the Mushroom Research Center (Experiment \#9)... 73

Table 4.8. Treatment numbers and nutrient mixtures for production of Grifola frondosa (WC828) on oak sawdust (79.8\%) and gypsum (0.2\%) at the Mushroom Research Center (Experiment \#10). 73

Table 4.9. Treatment numbers and nutrient mixtures for production of Grifola
frondosa (WC828) on oak sawdust (69.8\%) and gypsum (0.2\%) at the
Mushroom Research Center (Experiment \#11)
73

Table 4.10. Treatment numbers and nutrient mixtures for production of Grifola
frondosa (WC828) on oak sawdust (79.8\%) and gypsum (0.2\%) at the
Mushroom Research Center (Experiment \#12)
74

Table 4.11. Treatment numbers and nutrient mixtures for production of Grifola
frondosa (WC828) on oak sawdust (69.8\%) and gypsum (0.2\%) at the
Mushroom Research Center (Experiment \#13)
74

Table 4.12. The quality scale (1-4) for maitake. ... 75
Table 4.13. Crop cycles time (wk) showing spawn run time and primordia and fruitbody development of 23 isolates of Grifola frondosa grown on sawdust substrate supplemented with 20\% nutrient at The Mushroom Research Center (Experiment \#1-\#4).. 123

Table 4.14. Percentage biological efficiency (\%BE) and quality among 10 Grifola frondosa isolates grown on sawdust substrate supplemented with 20% nutrient evaluated in crops I and II of Experiment \#1 and \#4 at the Mushroom Research Center. ... 124

Table 4.15. Effect of selected nutrients (20% total), added alone or in combination to oak sawdust, on crop cycle time (weeks) for Grifola frondosa (WC828) grown at the Mushroom Research Center (Experiment \#5). For a graphic summary of this data see Figure 4.9 124
Table 4.16. The effect of selected nutrients (20% total) on percentage biological efficiency (\%BE) and quality for isolate WC828 for crops I and II grown at the Mushroom Research Center (Experiment \#5).

Table 4.17. Effect of various levels of selected nutrients (wheat bran and millet) added to a sawdust (oak) substrate on crop cycle time (weeks) for Grifola frondosa (WC828) grown at the Mushroom Research Center (Experiment \#7 and 8). .. 125
Table 4.18. Effect of various levels of selected nutrients (wheat bran and rye) added to a sawdust (oak) substrate on crop cycle time (weeks) for Grifola frondosa (WC828) grown at the Mushroom Research Center (Experiment \#10 and 11).

Table 4.19. Effect of various levels of selected nutrients (wheat bran, millet and rye) added to a sawdust (oak) substrate on crop cycle time (weeks) for Grifola frondosa (WC828) grown at the Mushroom Research Center (Experiment \#12 and 13). 127

Table 4.20. Percentage biological efficiency (\%BE) and quality for Grifola frondosa (WC828) grown on substrates containing various levels of selected nutrients (wheat bran and millet at 20% or 30% total) at the Mushroom Research Center (Experiment \#7 and 8). 128

Table 4.21. Percentage biological efficiency (\%BE) and quality for 5 treatments evaluated in two experiments (\#10 and 11) for the effect of various levels of selected nutrients (wheat bran and rye at 20% or 30% total) for Grifola frondosa (WC828) grown at the Mushroom Research Center 129
Table 4.22. Percentage biological efficiency (\%BE) and quality for Grifola frondosa (WC828) grown on substrate supplemented with various levels of selected nutrients (wheat bran, millet and rye at 20\% total) at the Mushroom Research Center (Experiment \#12). 129

Table 4.23. Percentage biological efficiency (\%BE) and quality for Grifola frondosa (WC828) grown on substrate supplemented with various levels of selected nutrients (wheat bran, millet and rye at 30\% total) at the Mushroom Research Center (Experiment \#13)... 130

Acknowledgements

I am grateful to many people who have assisted me the completion of this project. Foremost amongst those are my advisor, Dr. Daniel J. Royse, and my family. Dr. Royse provided more than just technical assistance and funding support. His invaluable support, direction, encouragement, teaching and constructive criticisms have been critical to the completion of this thesis. I would like to thank Wenfeng Sun for her patience and love that made this work possible. I wish to express my great appreciation to my committee members, Dr. John E. Ayers, Dr. David Geiser, Dr. David Huff and Dr. C. Peter Romaine for their thoughtful review of this work and numerous suggestions regarding molecular phylogenetic analyses, PCR, sequencing and statistical analyses. My sincerest acknowledgement also goes to Patrick D. Collopy, Dr. Xi Chen, Dr. Manuel Ospina-Giraldo and Dr. Zhaowei Lu, my colleagues here in Buckhout Laboratory, for their scientific advice and friendship.

Chapter 1: Introduction

1.1 Cultivation of Grifola frondosa

Grifola frondosa (Dickson: Fr.) S.F.Gray, also known as hen-of-the-woods or maitake, is a choice edible mushroom (Lincoff 1981a,b). It produces large basidiomes (it can weigh up to 45 kg) and is one of the most popular edible mushrooms collected in the fall in United States. It somewhat resembles a small hen, is often found covered with leaves and grows at the base of hardwoods (especially oaks) and some conifers.

1.1.1 World production

Until about 20 years ago, maitake was only available from the wild. The first cultivation techniques were developed for maitake in 1979 (Hobbs 1996). Commercial production of maitake began in 1981 in Japan (Takama et al. 1981). Since then, Japan has become the major producer of maitake accounting for 98% of worldwide production (Chang 1999). Only 325 tons were produced in 1981. However, by 1986, production reached 2,203 tons, a 6.8 -fold increase in five years. By 1991, annual production reached 7,950 tons, another 3.6 -fold increase over the 1986-91 period. This increase is much higher than the increase (96.4%) for all cultivated edible mushrooms from 1986 (2176 tons) to 1991 (4273 tons) (Chang 1999). During the 1990s, commercial production of maitake increased rapidly not only in Japan, but also in China and the U.S. By 1997, world production of maitake reached 331,000 tons (an increase of 40.6 fold compared with 1991) (Figure 1.1).

Figure 1.1. World production of Grifola frondosa (maitake) from 1981 through 1997. (Source: Chang 1999, Ohmasa 1994, Yamanaka 1997).

1.1.2 Nutrition and physiology

Matsumoto and Ohira (1982) found that glucose, soluble starch, maltose, mannose and fructose, respectively, were the most effective carbon sources utilized for mycelial growth by maitake. Peptone was the "best" nitrogen source among those tested by Matsumoto and Ohira (1982). These researchers also found that the absence of $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}$ and Cu^{2+} in the basal medium resulted in an apparently decreased growth rate of the mycelium.

1.1.3 Methods of commercial production

Relatively little literature is available for growers contemplating maitake cultivation when compared with information available for other edible mushrooms. A common substrate used for commercial production of maitake is supplemented sawdust. Hardwood sawdust (oak, beech, larch, poplar, cottonwood, elm, willow and alder) is generally used by commercial growers. Oak (Lee 1994, D.J. Royse, unpublished data) is the most popular choice in the
U.S. and Japan, while beech and larch are also used in Japan (Kirchhoff 1996, Yoshizawa et al. 1997, Stamets 2000). In China, cottonseed hulls were used as a substitute for sawdust and provided an acceptable yield (Zhao et al. 1983). Bran derived from cereal grains, such as rice bran (Takama et al. 1981), wheat bran (Mayuzumi and Mizuno 1997), oat bran and corn bran, are widely used as nutrient supplements. Other nutrient supplements used for maitake production include millet (D.J. Royse, unpublished data), corn meal (Kirchhoff 1996), and soybean cake (Mizuno and Zhuang 1995).

To date, three basic methods of cultivation have been established. These include bag culture, bottle culture and outdoor bed culture (Mayuzumi and Mizuno 1997).

Bag culture is used most frequently by commercial producers. For bag culture, the moistened substrate (2.5 kg) is filled into polypropylene or high density polyethylene bags. After sterilization and cooling, the substrate is inoculated with maitake spawn that is through-mixed by shaking. A spawn run lasts about 30 to 45 days depending on isolate and substrate formulation (Royse 1997). Expected yields are in the range of 0.35 to 0.68 kg per 2.5 kg bag of moist (58\%) substrate (Royse 1997).

For bottle production, the containers are filled with moistened (55 to 60\%) substrate and sterilized or pasteurized prior to inoculation (Royse 1997). The size of the harvested mushroom is smaller than those from bags because there is less substrate in bottles. However, bottle culture is suitable for year-round production and is more suitable for mechanization with minimum labor requirements. In Japan, it is anticipated that automatic mechanized bottle culture systems in large-scale facilities soon will become the dominant method for maitake production (Yamanaka 1997).

Outdoor bed culture on colonized substrate in moist soil was first attempted in Japan under natural climatic conditions (Mayuzumi and Mizuno 1997). This method requires about 6 months from inoculation to basidiome formation, and yields are much lower than those of bag or bottle methods. Therefore, this method only is used on a very limited scale today in Japan.

1.2 Geographic distribution and host range of Grifola frondosa

Grifola frondosa grows on dead or dying trees in the temperate regions of many countries. It was first discovered and reported from Europe (England, Norway, Denmark and Finland). It is commonly found in Eastern Canada and the eastern, midwestern, and southeastern United States, but rarely in the Pacific Northwest. Grifola frondosa also is indigenous to the temperate hardwood regions of China, and has been reported from the northeastern regions of Japan, Australia and other countries (Gilbertson and Ryvarden 1986, Hobbs 1996, Stamets 2000, Zhao and Zhang 1992).

Maitake is found on stumps or at the base of dead or dying deciduous hardwoods (Stamets 2000). It also may grow on roots and in the heartwood of living hardwoods causing butt rot disease (Farr et al. 1987, Webster 1980). Grifola frondosa is considered a white rot fungus decomposing both lignin and cellulose (Mizuno and Zhuang 1995).

The host range of Grifola frondosa includes oak (Quercus), elm (Ulmus), maple (Acer), blackgum (Nyssa), larch (Larix) and beech (Fagus). It is also found occasionally on species of Castanea, Pinus, Prunus, and Pseudotsuga (Farr et al. 1987).

1.3 Nutritional components

As shown in Table 1.1, fresh basidiomes of maitake at harvest contain approximately 91% moisture. Protein, carbohydrate, lipid, and fiber are the major components. Maitake also contains other nutritive components including minerals, free amino acids, organic acids, nucleotides, vitamins B_{1}, B_{2} and ergosterol (provitamin D). Nucleotides, free carbohydrates, organic acids and amino acids are the main flavor components.

Table 1.1. Nutritional components of basidiomes of Grifola frondosa (Imazeki and Hong 1989).

Component	Fresh (\%)	Dry wt. basis (\%)
Moisture	91	-
Protein	3.7	40.7
Lipid	0.7	7.8
Ash	0.8	8.9
Carbohydrate	2.4	26.6
Fiber	1.4	15.5

Basidiomes of maitake are rich in potassium (K) and phosphorous (P), and contain lesser amounts of $\mathrm{Mg}, \mathrm{Ca}, \mathrm{Na}$ and Zn (Tmazeki 1989). The types and amounts of amino acids present in the basidiomes are an important contributor to flavor. Glutamic acid, which contributes substantially to culinary desirability, is present in the greatest amount in maitake basidiomes, followed by alanine, threonine, aspartic acid, valine, lysine, and arginine (Mizuno and Zhuang 1995). The free carbohydrates in maitake include trehalose, glucose, and mannitol (Mizuno and Zhuang 1995). Many free acids have been detected in maitake basidiomes. These include pyroglutamic acid, lactic acid, acetic acid, formic acid, malic acid, citric acid, succinic acid, oxalic acid, and fumaric acid (Kagawa 1989, Mizuno and Kim 1996). Lipids found in maitake include neutral lipids (triglycerides, TG), sterol lipids (acylsterol) and sphingolipids (ceramide and cerebroside) (Mizuno and Kim 1996).

1.4 Medicinal value

Maitake has gained in popularity among consumers, not only because of its excellent favor, but also because of its reported medicinal value. In the last 25 years, over 70% of scientific articles on maitake have dealt with some aspect of its medicinal properties.

Approximately 2000 years ago, maitake was used as a Chinese medicine called "Keisho". Shen Nong's Herbal (Wu 1955) describes the use of Keisho for improving the health of the spleen and stomach, calming nerves and treating hemorrhoids. In recent animal experiments and human clinical trials, maitake was shown to have both anti-tumor and anti-viral properties (Hobbs 1996, Jong et al. 1991, Mizuno and Zhuang 1995). Other medicinal uses of this mushroom include blood pressure regulation, control of diabetes, reduction of cholesterol, treatment of chronic fatigue syndrome (CFS), and anti-HIV activity (Adachi et al. 1988, Arakawa et al. 1977, Jong and Birmingham 1990, Kabir et al. 1987, Kubo and Nanba 1997, Mizuno and Zhuang 1995, Nanba 1993, Yagishita et al. 1977, 1978).

The majority of the references in recent years concern the anti-tumor activities of maitake. The major anti-tumor substances, which have been obtained from extracts of the basidiome and liquid-cultured mycelium, include polysaccharides and lectins (for example, anti-tumor polysaccharides $-\mathrm{Fl}_{0}-\alpha-\beta_{1}$, FIII-1a, LMCA and Grifola frondosa lectin - GFL) (Mizuno and Kim 1996).

1.4.1 Anti-tumor polysaccharides

Both the basidiome and liquid-cultured mycelium of G. frondosa contain polysaccharides that inhibit growth of tumors (Ying et al. 1987). More than 20 anti-tumor polysaccharides have been isolated and purified from G. frondosa. Each active polysaccharide has a basic structure of a (1-6)- β-branched (1-3)- β -

D-glucan and heteroglycan or heteroglycan-protein complex as the major component (Mizuno et al. 1995).

Glucans are some of the major constituents in fungal cell walls. Miyazaki et al. (1978) proposed that the anti-tumor activity of glucans was influenced by the type of carbohydrate linkage, branch length and frequency, and molecular size and configuration.

Several glucans isolated from G. frondosa have been patented in Japan as potential anti-tumor, anti-cancer and immunodulating agents. These include GF-1, Grifolan-N and Grifolan NMF-5N (anonymous 1983, 1985, Oikawa et al. 1987, Takeyama et al. 1987). Scientists have concentrated on how these polysaccharides stimulate the mammalian immune system. They appear to enhance the cytolytic and interleukin-1 productivity of macrophages or T cells and to potentiate the delayed-type hypersensitivity response associated with tumor growth suppression (Jong and Birmingham 1990). However, the relationship between these polysaccharides and the medical effects is not fully elucidated.

1.4.2 Lectins

Lectins, carbohydrate-proteins of nonimmune origin, which agglutinate cells or precipitate polysaccharides or glycoconjugates, are widely distributed in living organisms including animals, plants, fungi, bacteria and viruses (Wang 1998). Ischnoderma resinosum agglutinin (IRA), a β-galactosyl-specific lectin, was the first lectin isolated from fungi (Kawagishi 1995). Grifola frondosa lectin (GFL) was isolated from basidiomes by affinity chromatography on acid-treated sepharose CL-4B and subsequently on GalNAc-toyopearl (Kawagishi 1990). It is N -acetylgalactosamine-specific with more than three subunits per molecule and over 100 kDa in size. GFL was cytotoxic against HeLa cells (cervical cancer cells). The minimum concentration of lectin leading to death of all cells was 25
$\mu \mathrm{g} / \mathrm{ml}$ (Kawagishi 1995). However, lectins were only isolated from basidiomes; neither maitake mycelium nor its culture filtrate showed any lectin activity (Mizuno and Zhuang 1995).

1.5 Morphology and classical taxonomy

The genus Grifola S.F.Gray is characterized by its large compound basidiomes emerging from soil at the base of trees or stumps (Figure 1.2). In 1821, G. frondosa was described as "having stem lateral and cap semicircular" and was placed in the family Hymenotheceae by Gray (1821). Recently, the genus Grifola S.F.Gray was placed in the phylum Basidiomycota, order Aphyllophorales, and family Polyporaceae (Alexopoulos 1996).

Figure 1.2. Morphology of Grifola frondosa (maitake)

Among the monographs about polypores, Gilbertson and Ryvarden's North American Polypores (1986) may be the most widely accepted with regard to taxonomy of Grifola. Another monograph about polypores is the work of Zhao and Zhang (1992) "The Polypores of China". Zhao and Zhang (1992) accepted most of the taxonomic work of Gilbertson and Ryvarden (1986) when they described Chinese polypores. Gilbertson and Ryvarden (1986) described the basidiomes of Grifola as annual, stipitate, stipe simple or branched to give rise to large numbers of petaloid pilei, upper surface gray to brownish, finely tomentose to glabrous, pore surface white to cream colored, the pores angular, 2-4 per mm, context white to pale buff, tubes decurrent on stipe. The hyphal system is dimitic containing generative hyphae with clamp connections. Basidiospores are ovoid to ellipsoid. Zhao and Zhang (1992) accepted these morphological descriptions and taxonomy concerning Grifola.

However, they also added some additional characters: thick-walled, yellowish skeletal hyphae and hyaline, smooth basidiospores.

Gilbertson and Ryvarden (1986) and Zhao and Zhang (1992) included only one species - Grifola frondosa (Dicks: Fr.) S.F. Gray in this genus. The history of G. frondosa dates to 1785; Dickson (1785) named this species Boletus frondosus Dicks. Fries (1821) changed it to Polyporus frondosus Dicks.: Fr. and Gray (1821) changed it to Grifola frondosa (Dicks.: Fr.) S.F. Gray. Gray (1821) described Grifola frondosa as "thallus much branched, caps numerous, halved, smoke grey, at the foot of oak-trees in autumn, about a foot wide and edible."

Gilbertson and Ryvarden (1986) examined morphological details of specimens collected in the United States. Basidiomes were described as annual, stipitate, and reaching to 40 cm wide. Stipe much branched from a thick base, cream colored, up to 10 cm or more in diameter at the base, giving rise to large numbers of imbricate, petaloid or flabelliform and often confluent pilei up to 8 cm wide and 8 mm thick. Upper surface pale lavender-gray at first, becoming darker and finally a dull dark brown on older specimens. Margin is concolorous, thin, often undulate or curled. Pore surface is ivory white. Pores are angular, 2-4 per mm , with thin, lacerate dissepiments. The context is ivory white, up to 2 mm thick in individual pilei, up to several centimetre thick at base and in main branches of the stipe. The tube layer is decurrent on the stipe, often to the ground line, distinct from context, pale tan on older dried specimens, brittle and shattering easily when dried, up to 5 mm thick. Odor is pleasant and nutlike. The contextual generative hyphae of G. frondosa are hyaline, thin-walled, with clamp connections, rarely branched, 2.5-5 nm in diameter. Contextual skeletal hyphae are moderately thickwalled, nonseptate, with infrequent branching, 2.5-6 nm in diameter, but generative hyphae are more frequently branched. Basidia are clavate, 4-sterigmate, 22-26 x 7-8 $\mu \mathrm{m}$, with a basal clamp connection. Basidiospores (6-7 x 4-4.5 $\mu \mathrm{m}$) are negative in Meizer's reagent.

Zhao and Zhang (1992) based their descriptions on Chinese specimens. The morphological characters are very similar to those described by Gilbertson and Ryvarden (1986) except that some differences were noted regarding color and size. Basidiomes are 2-7 x 3-7 cm, 2-7 mm thick with a white to gray-white upper surface. The context is white, $1-3 \mathrm{~mm}$ thick. Tubes are $1-4 \mathrm{~mm}$ long, whitish or milky yellow. Pore surfaces are white to yellowish with 1-3 pores per mm . The generative hyphae are 2.3-5.2 $\mu \mathrm{m}$ in diameter, less branched, with clamp connections. The skeletal hyphae are colorless, or faintly yellowish, 3.5-5 $\mu \mathrm{m}$ in diameter. Basidiospore size is $5-7.5 \times 3.5-4.5 \mu \mathrm{~m}$.

1.6 Taxonomic discrepancies

1.6.1 Family level

Grifola frondosa is widely accepted in the family Polyporaceae. However, there are discrepancies regarding family placement. Hawksworth et al. (1995) placed this species in the family Coriolaceae in his Dictionary of the Fungi. Jülich (1981) proposed a new family Grifolaceae. In the National Center for Biotechnology Information (NCBI) taxonomy database (1999), Grifola was placed in the family Schizophyllaceae.

1.6.2 Genus level

Fries (1821) described the macroscopic characters of Polyporus frondosus in his Systema Mycologicum. Saccardo and Traverso's (1882) Sylloge Fungorum Omnium Hucusque Cognitorum did not include the genus Grifola. Hobles (1965) published a multiple-choice key for the identification of cultures of 149 species of wood-inhabiting Hymenomycetes based on comprehensive characters including microscopic characters, hyphal systems, extracellular oxidase and cultural characters. He also did not use the genus Grifola for Polyporus frondosus Dicks. ex Fr.

The genus Grifola was listed in the Check List of European Polypores (Donk 1974). Corner (1989) identified several South Asian Grifola species in his Ad Polyporaceae. The use of G. frondosa seems not to have been fully understood (Corner 1989) and, even now, Polyporus frondosus, the synonym of Grifola frondosa, still is widely used. The genus Grifola has not been accepted by all mycologists, so, the taxonomy of Grifola remains problematical. Corner (1989) found Grifola varied from multipileate to unipileate when he described Malesian species, so his description of Grifola is "fruit-bodies multipileate to unipileate". He also used a different description of the hyphal system. In his illustration of a Bornean (Malaysia) collection, hyphae of G. frondosa were described as monomitic, clamped, inflating in the stem and pileus and becoming copiously secondarily septate without clamps. And, these microscopic details agree with collections that he had made in England. Corner wrote: "The secondary septation of the hyphae of the stem and pileus of G. frondosa, which is so prominent that the species has been described as without clamps, might be considered a good generic distinction. It is described, in error it seems, by Gilbertson and Ryvarden as dimitic with uninflating hyphae" (Corner 1989). Ying et al. (1987) also observed "thin-walled, branched, septate hyphae without clamp connections" when he described Chinese specimens.

1.6.3 Species level

Gilbertson and Ryvarden (1987), Farr et al. (1989) and Zhao and Zhang (1992) accepted Grifola frondosa as the only species in this genus. But several other species of Grifola have been identified and/or used as tradition by many authors.

Gray (1821) identified five species of Grifola other than frondosa. They are Grifola platypora (wide-pored grifola), Grifola cristata (crested grifola), Grifola lucida (shining grifola), Grifola badia (bay grifola), and Grifola varia (changing
grifola). Singer (1969) identified an Argentine specimen as Grifola sordulenta (Montagne) Singer and a Chilean specimen as Grifola gargal Sing. Spec. nov. Donk (1974) listed one more species: Grifola umbellata (Pers. per Fr.) Pilát. Corner (1989) identified three new Singapore and Malaysian species: Grifola armeniaca sp. nov., Grifola eos sp. nov. and Grifola sp.A. Mizuno and Zhuang (1995) recognized three species of Grifola other than G. frondosa (maitake). They are G. albicans (shiromaitake), G. gigantea (choreimaitake), and G. umbellata (tonbimaitake).

Among all of these species mentioned by different authors, at least three species are thought to be very similar to G. frondosa based on morphological characters. They are G. sordulenta (Mont.) Singer, G. gigantea (Pers.) Pilét and G. umbellata (Pers. ex Fr.) Pilát.

Grifola sordulenta (Montagne) Singer

Singer (1969) described Grifola sordulenta as multipileate polypore. Its stipes rise from a large common trunk-like base where secondary stipes branch off. Its spores vary from subglobose to short ellipsoid or ellipsoid. And more recently, Rajchenberg and Greslebin (1995) identified Grifola sordulenta, which decays standing and/or fallen trees of several Nothofagus species (the main native forest resource in Patagonia) in southern Argentina. It is similar to G. frondosa (Dicks.: Fr.) S.F. Gray. However, it was found that G. frondosa differs with G. sordulenta in culture by a faster growth rate, by the formation of chlamydospores, and by readily sporulating in culture according to the description of Nobles (1965).

Grifola gigantea (Pers.) Pilét

Grifola gigantea is a synonym of Meripilus giganteus (Fr.) Karst and Polyporus giganteus Fr. Gilbertson and Ryvarden (1986) and Zhao and Zhang
(1992) both accepted Meripilus giganteus (Fr.) Karst. as a legatee species. They suggested that the genus Grifola was closely related to M. gigantea. For both genera, the large compound basidiomes, the ability to cause white rot, and the production of very similar spores are three characteristics that are nearly identical for the two genera. In contrast to Grifola, however, Meripilus has generative hyphae with simple septa, and has thin to thick walls without clamp connections (Gilbertson and Ryvarden 1986, Zhao and Zhang 1992).

Grifola gigantea is called choreimaitake in Japan, is edible when young but has an offensive odor (Mizuno and Zhuang 1995). It is found on the ground near broadleaf trees (Ying et al. 1987, Jong and Birmingham 1990). A water extract of the basidiomes of G. gigantea was shown to inhibit Ehrlich cancer development in white mice while similar extracts have shown inhibition rates as high as 90% against sarcoma 180 (Ying et al. 1987).

Grifola umbellata (Pers. ex Fr.) Pilét

Grifola umbellata is a synonym of Polyporus umbellatus (Pers.) Fr. (Arora 1986, Donk 1974, Farr et al. 1989) and Dendropolyporus umbellatus (Pers.: Fr.) Jül. (Breitenbach and Kränzlin 1991). It has a profusely branched basidiome with many petaloid pilei and differs from G. frondosa in basidiome form, colors and spores (Gilbertson and Ryvarden 1986, Zhao and Zhang 1992). The primordia of G. frondosa are rich, dark gray brown to gray black in color whereas the basidiome initials of G. umbellata are light gray. Macroscopically, these two mushrooms are easily distinguished by their form. Specimens of G. umbellata have central branched stipes. Microscopically, the spores of G. umbellata are substantially larger and more cylindrically shaped than the spores of G. frondosa (Stamets 2000).

Grifola umbellata is referred to as tonbimaitake in Japan (Mizuno and Zhuang 1995). In nature, this mushroom is found on the ground around tree
roots, at the base of stumps or from underground wood in broadleaf and coniferous forests. It is distributed primarily in the Northern Hemisphere (Farr et al. 1989). The portion found above ground is edible, while the portion under ground has purported medicinal value (Jong and Birmingham 1990, Ying et al. 1987). It has desirable culinary characteristics (Arora 1986, Bessette et al. 1997) and its medicinal value has been utilized in Chinese medicine from ancient times. A β-(I-3)-D-glucan showing antitumor activity against cancer has been isolated from its basidiomes (Mizuno and Zhuang 1995).

The taxonomic position of Grifola and some of its close allies is not clear. In the last century, Gray (1821) recognized six species of Grifola using only simple macroscopic characters. However, most other authors regard Gray's species designations species of Polyporus. For example, G. badia Pers.: S.F. Gray is P. badius (Pers.:S.F.Gray) Schweinitz (Bessette et al. 1997, Farr et al. 1989, Gilbertson and Ryvarden 1987). While G. varia is accepted as P. varius Fr.: Fr. (Farr et al. 1989, Gilbertson and Ryvarden 1987). Gray's shining grifola G. Iucida is thought to be P. Iucidium (the synonym of Ganoderma lucidium). Recently, although more details on morphological characters have been used to describe this group of fungi, there remain close similarities among the genera Grifola, Meripilus and Polyporus.

1.7 Molecular systematics

1.7.1 Ribosomal RNA genes

Recent advances in molecular genetics have provided techniques that allow researchers to study relationships among organisms at the molecular level. DNA sequence analysis has been exploited extensively in recent years by mycologists for systematic and phylogenetic studies on the various groups of fungi. Molecular data were useful in cases where morphological characters
alone are insufficient for the delineation of clear taxonomic groups. Most of these studies have focused on the analysis of ribosomal RNA genes (rDNA).

Ribosomal RNA genes exist in most genomes as multiple copies arranged in tandem repeats along one or more chromosomes. In eukaryotes, each repeat is composed of a transcription unit that codes for three RNAs: a small subunit RNA (SSU), a large subunit RNA (LSU) and a 5.8S RNA. The three genes are separated by two transcribed spacers, the ITS 1 and ITS 2. Each repeat is separated by a non-transcribed spacer, also called an intergenic spacer (IGS) (Figure 1.3). The gene coding for a 5 S RNA may be found within the nontranscribed spacer or comprising its own tandem repeat unit elsewhere in the genome.

Several features of rDNA make it appropriate for systematic and phylogenetic studies. First, this region of the genome is well characterized and conserved. Many primers already are available to amplify regions of the rDNA repeat that would supply sequence data for a wide range of taxa (White et al. 1990). Second, substantial research has been done on rDNA from many fungi, so ample datasets are available for reference. Additionally, different regions of rDNA evolve at variable rates, which can be used to investigate fungal relationships at different taxonomic levels (Bruns et al. 1991). For example, ITS regions are very suitable for phylogenetic analysis on both the species and genus levels.

Figure 1.3. Common gene arrangement within a eukaryotic rDNA unit. IGS= Intergenic spacer; ITS = internal transcribed spacer; 5S, 5.8S, SSU and LSU= coding regions, 'S' refers to the sedimentation coefficient in Swedberg unit.

1.7.2 Molecular phylogenetic studies with multiple genes

Although rDNA has been used widely in phylogenetic studies, the evolution of one gene may not represent the evolution of an entire genome. Therefore, gene trees reconstructed from sequences of a single gene may not infer authentic phylogenetic relationships among taxa (Li and Graur 1991). One way to increase the confidence in the phylogenetic assumption that a given gene tree reflects the underlying organism tree is to sample additional, independent genes. Each gene can be analyzed separately and the resulting phylogenies can be compared to see if they support or conflict with each other. Phylogenies can be inferred from the combined datasets if two different gene trees are not in conflict (Geiser et al. 2000).

Genes encoding for metabolic and structural proteins are conserved and have advantages over rDNA in that the alignment of the sequence is less ambiguous (Bruns et al. 1991). Moreover, degrees of variation in intron, exon, and protein sequences may provide valuable information for fungal systematic and evolutionary studies at different taxonomic levels.

1.7.3 β-tubulin genes

β-tubulin genes encode components of microtubules, which are major components of the cytoskeleton, mitotic spindles, and flagella of eukaryotic cells (Sullivan 1988). In fungi, mutations within the β-tubulin gene may confer resistance to the fungicide benomyl (Goldman et al. 1993, Koenraadt et al. 1992, Yarden and Katan 1993). This has led to an interest in studying this gene for the characterization of benomyl resistance in plant pathogens as well as for the development of selectable markers for transformation systems (May et al. 1987, Panaccione and Hanau 1990).
β-tubulin genes are useful for phylogenetic analysis at a variety of taxonomic levels. It has conserved exons and many introns. For example, the benA β-tubulin gene of Aspergillus spp. and Schizophyllum commune (Figure 1.4) usually have eight introns and the β-tubulin gene of Neurospora crassa has six introns (Figure 1.5). Several primers are available for use in amplifying specific regions of the gene (Thon and Royse 1999a).

Figure 1.4. β-tubulin gene structure of Schizophyllum commune (Russo et al. 1992). Regions marked with numbers are introns.

Figure 1.5. Schematic structure of Neurospora crassa β-tubulin gene (Orbach et al. 1986). Regions marked with numbers are introns.

Fungi such as Saccharomyces cerevisiae Hansen (Neff et al. 1983), Septoria nodorum Berk. (Cooley et al. 1991), and Neurospora crassa Shear et Dodge (Orbach et al. 1986) have one copy of the β-tubulin gene. Fungi, like

Aspergillus nidulans (Eid.) Wint. (May et al. 1987), Colletotrichum graminicola (Ces.) Wils. (Panaccione and Hanau 1990), and probably Schizophyllum commune Fr. (Russo et al. 1992) have two β-tubulin genes. But these two divergent genes have distinct functions. Thus, they are easily distinguished at the sequence level.

In recent years, β-tubulin gene sequences have been used in phylogenetic studies of slime molds (Baldauf and Doolittle 1997), protozoa (Edlind et al. 1996), Ascomycetes, such as Fusarium (Donaldson et al. 1995, O'Donnell et al. 1998) and Aspergillus (Geiser et al. 1998b) and Basidiomycetes, such as Lentinula and Pleurotus (Thon and Royse 1999a).

1.8 Grifola genome

Heim (1954), using microscopic observation, reported that Grifola frondosa has eight chromosomes. However, very little is known about the genome of G. frondosa, including the structure, distribution, and organization of ribosomal and β-tubulin genes in this genus. In GenBank, the only reported sequences of G. frondosa are partial ribosomal RNA 25 S large subunit sequences (Accession numbers: AF287863, M98641, M98611, M98580) (Hibbett and Vilgalys 1993, Hibbett et al. 2000), trehalose phosphorylase encoding cDNA sequences (Accession numbers:E17395, E17394) (Horinouchi et al. 1999), and trehalose synthase mRNA sequences (Accession numbers: AB010105, AB010104) (Ohnishi et al. 1998).

Chapter 2: Genetic variation present in ITS-1, ITS-2 and 5.8 S of the ribosomal DNA repeat and in selected regions of the β-tubulin gene for Grifola frondosa and related species

2.1 Introduction

Grifola frondosa (Dickson: Fr.) S.F.Gray is a white rot fungus widely distributed in Asia, North America and Europe. Commonly called maitake or hen-of-the-woods, it is considered a choice edible mushroom with exotic taste and medicinal qualities. Maitake is marketed throughout Asia and, because of increased consumer demand, its commercial production has grown dramatically in Asia and the United States.

Grifola frondosa was first described by S. F. Gray based on the production of unique, large compound basidiomes (Gray 1821). Recently, Gilbertson and Ryvarden (1986) identified G. frondosa found in North America, while Zhao and Zhang (1992) identified this species from China. Gilbertson and Ryvarden (1986) and Zhao and Zhang (1992) only accepted one species (G. frondosa) in the genus Grifola. However, Singer (1969) identified another Grifola species G. sordulenta. Polyporus umbellata (Pers.) Fr. and Meripilus gigantea (Fr.) Karst are also considered as close allies of G. frondosa based on morphological characters (Gilbertson and Ryvarden 1986, Zhao and Zhang 1992). These two species have synonyms of G. umbellata (Pers. ex Fr.) Pilét and G. gigantea (Pers.) Pilét, respectively.

No previous work concerning the genetic variability within G. frondosa and related species has been conducted. A clearer understanding of genetic variability is needed for classification and delineation of phylogenetic relationships of these fungi. Genetic selection and improvement of cultivated
isolates in commercial mushroom production also may be facilitated by such a study. Because of the morphological similarities of G. frondosa and its allies, molecular data would provide more information on genetic variability. In recent years, molecular techniques have been exploited extensively by mycologists for systematic studies on the various groups of fungi. Many of these studies have focused on DNA sequence analysis of ribosomal RNA genes (rDNA) and β tubulin genes.

Ribosomal RNA genes are conserved and well characterized with many primers available to amplify and sequence different regions of the rDNA repeat (White et al. 1990). In addition, Thon and Royse (1999a) have provided primer sequences that can be used for amplification of partial β-tubulin sequences in basidiomycetes.

In this study, partial regions of rDNA and β-tubulin genes were analyzed to examine the amount of genetic variability within isolates of G. frondosa and its allies. Specific primers were developed for amplification of regions of the β tubulin gene of G. frondosa. Sequences of a portion of the β-tubulin gene including three introns and exons at the 3 ' half were analyzed. Regions sequenced for analyzing genetic variability in rDNA included internal transcribed spacers-1 and -2 (ITS-1 \& -2) and the 5.8 S rRNA gene.

2.2 Materials and Methods

2.2.1 Cultures

A list of mushroom isolates used in this study are shown in Table 2.1 along with their geographic origin, locations and hosts. Fifty-two isolates of G. frondosa, including all isolates available from The American Type Culture Collection (ATCC) and The Pennsylvania State University Mushroom Culture

Collection (PSUMCC), were examined for genetic variability. All cultures were maintained by subculturing on potato dextrose agar supplemented with $1.5 \mathrm{~g} / \mathrm{L}$ of yeast extract (PDYA).

Table 2.1. List of species, isolate code, source, geographic origin, substrate and locality of Grifola frondosa and related species used for this study.

Species	Isolate code	Source ${ }^{\text {a }}$	Geographic origin	Host/Substrate	Locality
G. frondosa	WC248	L.C. Schisler	PSU, PA	N/A	N/A
G. frondosa	WC364	L.C. Schisler	PSU, PA	N/A	N/A
G. frondosa	WC367	Jodon	PSU, PA	N/A	Hort. Woods
G. frondosa	WC483	ATCC 11936	Maryland	Oak stump	N/A
G. frondosa	WC484	ATCC 48688	N/A	Acer saccharum	N/A
G. frondosa	WC493	ATCC 48141	Norway	Quercus robur	N/A
G. frondosa	WC555	Y.H.Park	Korea	N/A	N/A
G. frondosa	WC556	Y.H.Park	Korea	N/A	N/A
G. frondosa	WC557	Y.H.Park	Korea	N/A	N/A
G. frondosa	WC581	Y.H.Park	Korea	N/A	N/A
G. frondosa	WC582	Y.H.Park	Korea	N/A	N/A
G. frondosa	WC583	Y.H.Park	Korea	N/A	N/A
G. frondosa	WC659	Y.H.Park	Korea	N/A	N/A
G. frondosa	WC685	B.W.Yoo	N/A	N/A	N/A
G. frondosa	WC808	Bill Shanley	Tidioute, PA	White Oak	N/A
G. frondosa	WC828	D.J.Royse	N/A	Commercial isolate	Lowlands
G. frondosa	WC834	NGF 001	Nara Prefecture,	Castanopsis spp.	Highlands
G. frondosa	WC835	Hokken M-1	Japan	Japan	Commercial isolate on

Species	Isolate code	Source ${ }^{\text {a }}$	Geographic origin	Host/Substrate	Locality
G. frondosa	M010	$\begin{aligned} & \text { USDA OKM- } \\ & \text { 4954-T } \end{aligned}$	Beltsville (Prince George), MD	N/A	Ground, Beltsville Expt Forest
G. frondosa	M011	USDA OKM- $6133-S p$	Washington(Distr ict of Columbia), DC	N/A	Rock Creek Park
G. frondosa	M012	USDA RLG-14995-T	Baton Rouge, LA	Quercus virginiana	Memorial Grove, LA State U campus
G. frondosa	M013	$\begin{gathered} \text { USDA L-15552- } \\ \text { Sp } \end{gathered}$	Syracuse, NY	N/A	N/A
G. frondosa	M014	$\begin{aligned} & \text { USDA RLG- } \\ & 6889-T \end{aligned}$	Syracuse, NY	Quercus alba	Oakwood Cemetery
G. frondosa	M015	$\begin{gathered} \text { USDA TJV-93- } \\ 130-\mathrm{T} \end{gathered}$	Madison(Dane), WI	Quercus macrocarpa, base of live	Turville Pt. Woods
G. frondosa	M016	FIRDI 36283	Taiwan	N/A	N/A
G. frondosa	M017	FIRDI 36286	Taiwan	N/A	N/A
G. frondosa	M018	FIRDI 36355	Taiwan	N/A	N/A
G. frondosa	M019	FIRDI 36356	Taiwan	N/A	N/A
G. frondosa	M020	FIRDI 36357	Taiwan	N/A	N/A
G. frondosa	M021	FIRDI 36434	Taiwan	N/A	N/A
G. frondosa	M029	PSUMCC 600	Taiwan	Commercial strain	N/A
G. frondosa	M030	PSUMCC 601	Taiwan	Commercial strain	N/A
G. frondosa	M031	PSUMCC 602	Taiwan	Commercial strain	N/A
G. frondosa	M032	PSUMCC 604	Taiwan	Commercial strain	N/A
G. frondosa	M033	PSUMCC 630	Taiwan	Commercial strain	N/A
G. frondosa	M034	PSUMCC 644	Taiwan	Commercial strain	N/A
G. frondosa	M035	USDA RLG- 6889-Sp	Syracuse, NY	Quercus alba	Oakwood Cemetery
G. frondosa	M036	X.W.Chen	China	N/A	N/A
G. frondosa	M037	X.W.Chen	China	N/A	N/A
G. frondosa	M038	ATCC 60891	China	N/A	N/A
G. frondosa	M039	Tan 0206	He Bei, China	N/A	N/A
G. frondosa	M40	M. Chen	China	Commercial strain	N/A
G. sordulenta	G01	ATCC 200416	Argentina	Nothofagus dombeyi trunk	N/A
P. umbellatus ${ }^{\text {d }}$	G02	ATCC 60546	N/A	N/A	N/A
M. giganteus ${ }^{\text {e }}$	G06	$\begin{aligned} & \text { USDA FP- } \\ & 135344-\text { Sp } \end{aligned}$	England	Carpinus spp.	Virginia Waters

${ }^{\text {a }}$ ATCC = American Type Culture Collection; USDA = The Unitied States Department of Agriculture; FIRDI = Food Industry Research and Development Institute, Taiwan; PSUMCC = Pennsylvania State University Mushroom Culture Collection.
${ }^{\mathrm{b}} \mathrm{N} / \mathrm{A}=$ not available
${ }^{\text {c }}$ Culture misidentified. Found 98% match as Spongipellis delectans by blast search of ITS rDNA in this study.
${ }^{\text {d }}$ Polyporus umbellatus, synonym of Grifola umbellata.
${ }^{e}$ Meripilus giganteus, synonym of Grifola giganteus and Polyporus giganteus.

2.2.2 DNA extraction

Cultures were grown in 50 ml of potato dextrose yeast broth (PDYB) for 20 to 30 days at room temperature. Mycelium was harvested by vacuum filtration on Whatman qualitative filter paper, and washed once with distilled water. Fresh mycelium (100mg) was used to isolate DNA following the LETS extraction procedure (Chen et al. 1999). DNA preparations were diluted with sterile water and used as template for PCR amplification.

2.2.3 Primer design

Nine primers, targeting exons 5 to 9 of the β-tubulin genes of Schizophyllum commune, were prepared as outlined by Thon and Royse (1999a). I designed another four primers based on β-tubulin exon alignments of S. commune (Russo et al. 1992), Pleurotus pulmonarius (Kim and Magae 1999) and Coprinus cinereus (Matsuo et al. 1999). Sequences were targeted at exon 1,5 and 7 of the β-tubulin gene, respectively. A total of 13 specific primers (Figure 2.1) were screened in 15 different combinations (Table 2.2) using 7 isolates of Grifola frondosa (WC556, WC828, WC835, M009, M036, WC484, WC493), G. sordulenta G01, and Polyporus umbellatus G02. The selected isolates were assumed genetically diverse because of their taxonomy and isolation from substrates found in different geographic sites.

None of the primer pairs provided a single band of predicted size for all isolates tested. However, strong bands of around 680bp and 500bp were consistently found with primer pairs BT1.1/B34R and B43F/B41R, respectively, from all isolates (Figure 2.2). PCR products were subjected to electrophoresis at 70 V for 3 hours in 2% low melting point agarose prepared in TAE buffer (40 mM

Tris-acetate, 1 mM EDTA, pH 8.4). Amplicons (~680bp and ~500bp bands) were excised from the agarose gels and purified using the Wizard PCR Preps system according to instructions provided by the manufacturer (Promega Corp., Madison, WI).

Purified PCR products were sequenced using primers BT1.1, B34R, B43F and B41R. Sequences including the 3 ' end of exon 5 to exon 9 of the β-tubulin gene were aligned, and the specific primers BTG5F (5'-CGTTGTGCCCAGTCCTAAGGTG-3') and BTG8R GTTCTTGCTCTGCACGTTCTG-3') were designed to target the exon 5 to 8 region of the β-tubulin gene. These specific primers amplified a single strong band for all isolates of Grifola frondosa, except isolate WC484. All oligonucleotides were synthesized in an Oligo 1000M DNA synthesizer (Beckman Instruments, Inc; PSU Nucleic Acid Facility).
a.

b.

Primer Number	Name	Sequence 5' to 3'	Location in S. Commune sequence
1	BT1F	ATGCGTGAAATCGTCCACCT	1
2	BT5F	ATTCGTGAGGAATACCCCGAC	727
3	BT5R	CGGTCGGGGTATTCCTCACGA	730
4	B36F* *	CACCCACTCCCTCGGTGGTG	833
5	BT1.1* *	CTGGTATGGGTACTCTCCTGATCT	853
6	S11F *	CTTTCTGCATTGATAACGAG	1076
7	BT7R *	CCATCATGTTCTTGGCGTCGAAC	1247
8	B12R *	CATGAAGAAGTGAAGACGCGGGAA	1309
9	B43F* *	CCAAGAACATGATGGCTGC	1418
10	B42F* *	CTTGGTCTCCATGAAGGAGG	1536
11	B34R* *	CCTTCATGGAGACCTTGCCAC	1536
12	S12R*	CACTCGACGAAGTAGGCAGAGT	1591
13	B41R* *	CTGGTACTGCTGGTACTCG	1890

*Thon and Royse 1999a
Figure 2.1. Locations (a) and sequences (b) of 13 primers according to the Schizophyllum commune β-tubulin gene sequence reported by Russo et al. (1992).

Table 2.2. Combinations (15) of primer (13) pairs and their PCR amplification sizes in the Schizophyllum commune β-tubulin sequence tested for amplification in eight isolates of Grifola frondosa, G. sordulenta and Polyporus umbellatus.

Primer pair	Size (bp) in S. commune sequence*
BT1F/BT5R	748
BT5F/BT7R	542
BT5F/B12R	606
B36F/ B12R	500
B36F/ B34R	724
B36F/ S12R	780
BT1.1/ B12R	480
BT1.1/ B34R	704
BT1.1/ S12R	760
S11F/ B12R	257
S11F/ B34R	481
S11F/ S12R	537
S11F/ B41R	833
B43F/B41R	490
B42F/B41R	373

[^0]a.

Figure 2.2. PCR amplification products by primer pairs BT1.1/B34R (b) and B43F/B41R (c) corresponding to β-tubulin gene sequence (a) reported by Russo et al. (1992) from seven isolates of Grifola frondosa, one G. sordulenta G01 and Polyporus umbellatus G02. Isolate numbers are listed above each lane.

2.2.4 PCR amplification and sequencing of rDNA and β-tubulin

PCR was performed in $25 \mu \mathrm{l}$ reactions on a 96 -well PCR cycler (PTC-100 Programmable Thermal Controller, MJ Research, Inc.), using 10mg DNA template, 1 Unit of Taq DNA polymerase (Promega, Madison, WI), 0.2 mM of each dNTP, $2 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 0.1 \%$ Triton, as well as $0.5 \mu \mathrm{M}$ of each primer.

2.2.4.1 rDNA

Amplification of ITS-1, ITS-2, and 5.8 S rDNA was performed for all isolates utilizing primers ITS1AF (5'-TCCGTAGGTGAACCTGCGG-3') (White et al. 1990) and ALRO (5'-CATATGCTTAAGTTCAGCGGG-3') (Figure 2.3). PCR reactions for ITS regions were performed with the following parameters: $94^{\circ} \mathrm{C} / 1 \mathrm{~min} ; 35$ cycles of $94^{\circ} \mathrm{C} / 15 \mathrm{~s}, 60^{\circ} \mathrm{C} / 30 \mathrm{~s}$, $72^{\circ} \mathrm{C} / 1 \mathrm{~min}$; and $72^{\circ} \mathrm{C} / 5$ min.

2.2.4.2 β-tubulin

PCR reactions for β-tubulin regions were performed using two primer pairs BTG5F/BTG8R and BT1.1/B34R (Figure 2.4) with the following parameters: $94^{\circ} \mathrm{C} / 2 \mathrm{~min} ; 35$ cycles of $94^{\circ} \mathrm{C} / 15 \mathrm{~s}, 57^{\circ} \mathrm{C} / 30 \mathrm{~s}, 72^{\circ} \mathrm{C} / 1 \mathrm{~min}$; and $72^{\circ} \mathrm{C} / 7 \mathrm{~min}$. Primers BTG5F (5'-CGTTGTGCCCAGTCCTAAGGTG-3') and BTG8R (5'-GTTCTTGCTCTGCACGTTCTG-3') were used to amplify 51 isolates of G. frondosa, and one isolate of G. sordulenta G01 and Polyporus umbellatus G02. Isolate WC484 was amplified using primers BT1.1 and B34R. Reactions were optimized by adjusting concentrations of template DNA and other reagents and
primer annealing temperatures. Amplification products were electrophoresed on a 1.0% agarose gel and checked to ensure that a single DNA band was produced of the expected size ($\sim 600 \mathrm{bp}$ for ITS PCR products and $\sim 680 \mathrm{bp}$ for β tubulin PCR products).

For sequencing, PCR products were purified directly from reactions using the wizard PCR Preps System (Promega Corp., Madison, WI) and adjusted to a concentration of $20 \mathrm{ng} / \mu \mathrm{l}$. Sequencing reactions were performed using the PCR primers and an ABI dye-terminator kit ($\mathrm{ABI} /$ Perkin-Elmer). Sequences were resolved using an ABI Prism ${ }^{\circledR}$ Model 377 automated sequencing system (Applied Biosystems, Foster City, CA) located in the Department of Plant Pathology (Buckhout Lab.).

Figure 2.4. Locations of primer pairs (BTG5F/BTG8R and BT1.1/B34R) and the size ($\sim 680 \mathrm{bp}$) of amplicons for portions of the β-tubulin gene. Numbers indicate exons.

2.2.5 Sequence data analysis

Sequences were edited and initially aligned using the clustal W algorithm (Higgins et al. 1991) in the Lasergene package (DNAStar, Inc. Madison, WI) and then optimized visually. Nucleotide variations occurred in rDNA and β-tubulin genes were calculated by kimura 2-parameter model using PAUP, version 4.0b4a (Swofford 2000).

For rDNA, variable nucleotide sites within ITS-1, ITS-2 and the 5.8 S regions were calculated respectively among 51 isolates of Grifola frondosa, 52 isolates of Grifola spp. (G. sordulenta G01and 51 isolates of G. frondosa), and 12
isolates of G. frondosa and its allies (eight isolates of G. frondosa, WC484, G. sordulenta G01, Polyporus umbellatus G02, and Meripilus giganteus G06). For the β-tubulin gene, variable nucleotide sites within each exon and intron from exon 5 to exon 8 were calculated, respectively, among 51 isolates of Grifola frondosa, 52 isolates of Grifola spp. (G. sordulenta G01 and 51 isolates of G. frondosa), and 11 isolates of G. frondosa and its allies (eight isolates of G. frondosa, WC484, G. sordulenta G01, and Polyporus umbellatus G02). Nucleotide variations within these regions were compared and the highly variable and highly conserved domains within the regions were determined.

2.2.6 Database search

The database search of sequences for a possible match to the rDNA sequence of isolate WC484 was conducted using the Blastn algorithm (Altschul et al. 1997) available at the National Center for Biotechnology Information (NCBI, Bethesda, MD).

2.3 Results

2.3.1 Analysis of ITS sequences

Amplification of the ITS-1, ITS-2 and 5.8S ribosomal DNA repeat yielded fragments of approximately 600 bp as estimated by agarose gel electrophoresis. Characteristics of nucleotide variation present in these regions of Grifola frondosa and its allies are summarized in Table 2.3.

An alignment (Appendix A) with total sites of 574bp was used to compare nucleotide variation within Grifola frondosa and G. sordulenta. The alignment included the sequences of all isolates of Grifola frondosa (except WC484) and the only isolate of G. sordulenta. Isolate WC484 was excluded because of extreme variation compared with other G. frondosa isolates. Nucleotide variation
within isolates of Grifola frondosa was 5.4%. Thus, variation was relatively small compared to that observed between isolates of G. frondosa and G. sordulenta (14.3\%).

Table 2.3. Site variation within the ITS-1, 5.8 S, and ITS-2 gene region of Grifola frondosa and its allies.

	ITS-1				5.8 S			ITS-2			Total		
Isolates	Number ${ }^{\text {a }}$	Sites ${ }^{\text {b }}$	Total ${ }^{\text {c }}$	$\mathrm{V}(\%)^{\text {d }}$	Sites	Total	V(\%)	Sites	Total	V(\%)	Sites	Total	V (\%)
G. frondosa ${ }^{\text {e }}$	51	7	199	3.5	0	158	0	24	217	11.1	31	574	5.4
Grifola spp. ${ }^{\text {¢ }}$	52	30	199	15.1	0	158	0	52	217	24.0	82	574	14.3
Grifola frondosa and allies ${ }^{g}$	11	116	220	52.7	0	158	0	119	222	53.6	235	600	39.2

${ }^{\text {a }}$ Number of isolates included.
${ }^{\mathrm{b}}$ Number of variable sites.
${ }^{\text {c }}$ Total number of sites compared.
${ }^{\text {d }}$ Percentage of sequence variation.
${ }^{e}$ All sequences of G. frondosa (excluding WC484).
${ }^{\dagger}$ Isolates included G. frondosa (excluding WC484) and G. sordulenta.
${ }^{9}$ Isolates included eight G. frondosa, G. sordulenta, Polyporus umbellatus G01, and Meripilus giganteus G06.

The same pattern of variation occurred within the ITS-1, 5.8S, and ITS-2 gene regions. Isolates of G. frondosa showed the lowest nucleotide variation in ITS-1 (3.5\%), 5.8S (0\%), and ITS-2 (11.1\%) gene regions. Nucleotide variation between isolates of G. frondosa and G. sordulenta in ITS-1, 5.8S, and ITS-2 gene regions were $15.1 \%, 0 \%$, and 24.0% respectively.

Sequences of eight isolates of G. frondosa (M009, M004, WC493, WC659, M030, WC835, WC828 and M037), which have different geographic origins, and isolates of G. sordulenta, Polyporus umbellatus and Meripilus giganteus were aligned to compare and calculate nucleotide variation. Total number of sites of the alignment (Appendix B) were 600bp. Among isolates of Grifola frondosa and its allies, the nucleotide variation (39.2\%) was much higher.

In the 5.8S gene, no nucleotide differences were found among isolates of G. frondosa and it allies. Thus, most of the variation observed was attributed to nucleotide differences within the ITS-1 and ITS-2 regions. Because of the high nucleotide variation in the ITS-1 (52.7 \%) and ITS-2 (53.6\%) gene regions, the alignment (Appendix B) is ambiguous.

The blast search of sequences for a possible match to the rDNA sequence of isolate WC484 yielded 998 hits on the query sequence in the nucleotide databases at the NCBI. The highest match was Spongipellis delectans ITS-1, 5.8 S, and ITS-2 nuclear rDNA sequence (Yao et al. 1998). The score for this match is 1088 bits with an E value of zero. The alignment (Appendix C) of 573 total nucleotides showed 98% identities. The scores for the remainder of the matches were lower than 335 bits with E values higher than 1.0E-89. This indicated that Grifola frondosa isolate WC484 from the ATCC (American Type Culture Collection) is probably a misidentified isolate of Spongipellis delectans.

2.3.2 Analysis of partial β-tubulin sequences

Amplified fragments of the partial β-tubulin sequences were approximately 680bp and contained 40bp of the 3 '-end of exon 5, exon 6, 7, 72bp of the 5'-end of exon 8 and intron 5, 6, 7, which were identified based on their reported locations in the Schizophyllum commune β-tubulin gene sequence (Russo et al. 1992) and the identity of GT- -AG splice junctions for introns. Isolate of Meripilus giganteus G06 was not included in the analysis because several attempts to sequence PCR products were unsuccessful.

The characteristics of nucleotide variation present in partial β-tubulin sequence regions of Grifola frondosa and its allies are summarized in Table 2.4. The nucleotide variations within Grifola frondosa and G. sordulenta were analyzed by aligning 51 sequences of G. frondosa and one isolate of G.
sordulenta (Appendix D). The total number of sites was 587 bp and included 4bp of 3 '-end of exon $5,58 \mathrm{bp}$ of intron $5,229 \mathrm{bp}$ of exon $6,62 \mathrm{bp}$ of intron $6,164 \mathrm{bp}$ of exon $7,62 \mathrm{bp}$ of intron 7 and 8 bp of the 5 '-end of exon 8 of the β-tubulin gene. An alignment (Appendix E) with total sites of 401 bp was used to compare nucleotide variation within Grifola frondosa (M009, M004, WC493, WC659, M030, WC835, WC828 and M037) and related species (G. sordulenta and Polyporus umbellatus). This alignment included end base pairs (AG) of intron 5 and 6, 229bp of exon 6, 164bp of exon 7, and start base pairs (GT) of intron 6 and 7 of the β-tubulin gene sequence. Intron 5, 6 and 7 were excluded from the analysis because of an ambiguous alignment.

Within isolates of Grifola frondosa, nucleotide variation was 12.2% for total sites. Most of the variation occurred in introns with 14.8% for intron $5,23.7 \%$ for intron 6, and 32.3% for intron 7. Lesser variation was observed in exons with 8.3% for exon 6 , and 5.5% for exon 7 . The sequences of G. frondosa and G. sordulenta showed much higher variation for the total alignment (30.2%) and across the introns and exons. The most variable region was intron 5 (56.9\%) and exon 7 was the most conserved region (18.3\%) within the β-tubulin gene sequence regions analyzed.

Among isolates of Grifola frondosa and its allies, sequence variances within introns 5 and 7 were too high to allow an unambiguous alignment. The nucleotide variation of exon 6 (23.6\%) and exon 7 (21.3\%) were much higher than that within G. frondosa. No insertions and deletions were observed within exons.

Table 2.4. Site variation within the partial β-tubulin gene region of Grifola and its allies.

		Exon 5			Intron 5			Exon 6			Intron 6		
Isolates	number ${ }^{\text {a }}$	Sites ${ }^{\text {b }}$	Total ${ }^{\text {c }}$	$\mathrm{V}(\%)^{\text {d }}$	Sites	Total	V(\%)	Sites	Total	V(\%)	Sites	Total	V(\%)
G. frondosa ${ }^{\text {e }}$	51	0	4	0	8	54	14.8	19	229	8.3	14	59	23.7
Grifola spp. ${ }^{\dagger}$	52	0	4	0	33	58	56.9	45	229	19.7	35	62	56.5
Grifola frondosa and allies ${ }^{g}$	10	-	-	-	0	2	0	54	229	23.6	0	4	0
			Exon 7			ntron 7			Exon 8			Total	
Isolates	number	Sites	Total	V(\%)									
G. frondosa ${ }^{\text {e }}$	51	9	164	5.5	20	62	32.3	1	8	12.5	71	580	12.2
Grifola spp. ${ }^{\dagger}$	52	30	164	18.3	33	62	53.2	1	8	12.5	177	587	30.2
Grifola frondisa and allies ${ }^{g}$	10	35	164	21.3	0	2	0	-	-	-	89	401	22.2

${ }^{\text {a }}$ Number of isolates included.
${ }^{\mathrm{b}}$ Number of variable sites.
${ }^{\text {c }}$ Total number of sites compared.
${ }^{d}$ Percentage of sequence variation
${ }^{e}$ All sequences of G. frondosa (excluding WC484)
${ }^{\dagger}$ Isolates included G. frondosa (excluding WC484) and G. sordulenta
${ }^{9}$ Isolates included eight G. frondosa, G. sordulenta G01, Polyporus umbellatus G02.

2.4 Discussion

Nearly 30 years ago, researchers first observed that rRNA genes from closely related species are highly evolutionarily conserved, while ITS and intergenic regions are much more variable (Brown et al. 1972). The findings regarding the genetic variability in ITS and 5.8 S rDNA regions of the G. frondosa and its related species are similar. Most of the nucleotide variation was found in the ITS regions, while 5.8 S shared significant sequence similarity (Table 2.3).

Similar to other protein encoding genes, nucleotide variation of exons in β tubulin genes was much less than that of introns. Thus, β-tubulin gene
sequences may be used successfully for phylogenetic studies because alignments in exons are less ambiguous, and sufficient phylogenetic information is available from introns. The protein encoding regions (exons) of β-tubulin genes are conserved because they encode components of microtubules that are major structural components of eukaryotic cells. No amino acid changes were observed within isolates of G. frondosa. Two amino acid changes were observed between isolates of G. frondosa and G. sordulenta. Most nucleotide substitutions were observed in the third codon of amino acids.

Comparison of sequence divergence of ITS and β-tubulin revealed a higher level of nucleotide variation in the regions of β-tubulin than in ITS regions. Within G. frondosa species, nucleotide variation in exons of β-tubulin was even higher than in ITS-1 and ITS-2. Thus, the β-tubulin gene provided more phylogenetic information at the species level.

DNA sequence data indicated that Grifola frondosa isolate WC484 is

Figure 2.5. Primordium of WC484 grown on sawdust substrate. probably misidentified. Morphological differences in culture and spawn between WC484 and G. frondosa were observed. It was also found that WC484 formed a unique red color primordium on supplemented sawdust substrates (Figure 2.5). This is different than the dark gray color primordium formed by G. frondosa (Chapter 4, this thesis) and can be considered a significant morphological difference. Unfortunately, the production of fruitbodies from WC484 was not successful.

Chapter 3: Phylogenetic analysis of Grifola frondosa and its related species based on ITS-1, ITS-2 and 5.8S rDNA and partial β-tubulin gene sequences

3.1 Introduction

Grifola frondosa is a white rot fungus usually found on stumps or at the bases of dead or dying deciduous hardwoods (Farr et al. 1987, Stamets 2000, Webster 1980). It is considered a choice edible mushroom and has proven effective as an antiviral and antitumor agent (Hobbs 1996, Jong et al. 1991). Production and consumption of this mushroom is increasing rapidly in the world and the United States because of its excellent taste and its nutritional and medicinal value.

Traditional classification of G. frondosa was based solely on morphological characters. The genus Grifola S.F.Gray was first applied by Gray (1821) and described as a polypore with large compound basidiomes. Later, microscopic characters, such as the hyphal system and spore morphology, were used for classification. However, even with these simple descriptions many taxonomic discrepancies remain for G. frondosa at the species, genus and family levels.

Wild populations of G. frondosa are widely distributed in Asia, North America and Europe. Previous taxonomic investigations (Gilbertson and Ryvarden 1986, Zhao and Zhang 1992) have revealed similar morphological characters between North American and Asian isolates. They recognized G. frondosa (Dicks.:Fr.) S.F.Gray as the only species in the genus Grifola. However, Singer (1969) identified another Grifola species - G. sordulenta. Based on morphological characters, Polyporus umbellatus (Pers.) Fr. and Meripilus
gigantea (Fr.) Karst are close allies of G. frondosa (Gilbertson and Ryvarden 1987). They also are considered species of Grifola by some researchers (Mizuno and Zhuang 1995). Alexopoulos et al. (1996) accepted G. frondosa as a member of the Polyporaceae; however, it also was placed in the family Grifolaceae (Jülich 1981) and Coriolaceae (Hawksworth et al. 1995) by other researchers. Thus, the taxonomic position of Grifola and some of its allies is not clear.

Few studies have been undertaken to investigate genetic diversity, evolutionary relationships, and systematics in the genus Grifola. A thorough understanding of these relationships are necessary to effectively carry out efforts aimed at developing improved commercial lines of G. frondosa and understanding the taxonomic and phylogenetic relationships among Grifola and its allies.

Molecular approaches have been used extensively for examining phylogenetic relationships among other edible fungi (for example see Hibbett et al. 1995, Thon and Royse 1999b and Vilgalys and Sun 1994). However, no such work has been reported on Grifola until the recent studies by Hibbett et al. (1997, 2000) based on mitochondrial and nuclear small and large subunit ribosomal RNA sequences. They presented a phylogenetic analysis of a board sampling of basidiomycetes, which included one isolate of G. frondosa and one isolate of a related species (Meripilus giganteus). Their result showed that G. frondosa was far related to M. giganteus.

In this study, a phylogenetic analysis using DNA sequences from two gene regions was undertaken to clarify the relationships of G. frondosa and its allies. I used the internal transcribed spacers 1 and 2 (ITS-1 and 2) and 5.8S gene of the nuclear ribosomal DNA transcriptional unit and a portion of the β tubulin gene encoding for 3 introns and 3 exons.

The rDNA regions were chosen because the small and large subunit regions are conserved and well characterized and many primers are available for PCR. In addition, the variability observed in the ITS regions supplied sufficient sequence data for analyzing taxa at both the species and genus levels. The β tubulin gene is a structural protein gene with many introns. The conserved protein encoding regions provided less ambiguous alignment than the ITS regions of rDNA.

3.2 Materials and Methods

3.2.1 Cultures

A total of 51 isolates of G. frondosa, one isolate of G. sordulenta, one isolate of Polyporus umbellatus, one isolate of Meripilus giganteus, and one isolate of Ganoderma lucidium were used in this study (Table 3.1). The isolates of G. frondosa included all available isolates from the American Type Culture Collection (ATCC) and the Pennsylvania State University Mushroom Culture Collection (PSUMCC). Isolates represented various geographic origins including Asia (27), United States (21), Europe (1), and unknown origin (3). All cultures are maintained on potato dextrose agar supplemented with $1.5 \mathrm{~g} / \mathrm{L}$ of yeast extract (PDYA).

Table 3.1. List of species, isolate code, source, geographic origin, substrate and locality of Grifola frondosa and related species used for this study.

Species	Isolate code	Source $^{\text {a }}$	Geographic origin	Host/Substrate	Locality
G. frondosa	WC248	L.C. Schisler	PSU, PA	N/A	b
G. frondosa	WC364	L.C. Schisler	PSU, PA	N/A	N/A
G. frondosa	WC367	Jodon	PSU, PA	N/A	Hort. Woods
G. frondosa	WC483	ATCC 11936	Maryland	Oak stump	N/A
G. frondosa	WC493	ATCC 48141	Norway	Quercus robur	N/A
G. frondosa	WC555	Y.H.Park	Korea	N/A	N/A
G. frondosa	WC556	Y.H.Park	Korea	N/A	N/A
G. frondosa	WC557	Y.H.Park	Korea	N/A	N/A
G. frondosa	WC581	Y.H.Park	Korea	N/A	N/A
G. frondosa	WC582	Y.H.Park	Korea	N/A	N/A
G. frondosa	WC583	Y.H.Park	Korea	N/A	N/A

Species	Isolate code	Source ${ }^{\text {a }}$	Geographic origin	Host/Substrate	Locality
G. frondosa	WC659	Y.H.Park	Korea	N/A	N/A
G. frondosa	WC685	B.W.Yoo	N/A	N/A	N/A
G. frondosa	WC808	Bill Shanley	Tidioute, PA	White Oak	N/A
G. frondosa	WC828	D.J.Royse	N/A	Commercial isolate	N/A
G. frondosa	WC834	NGF 001	Nara Prefecture, Japan	Castanopsis spp.	Lowlands
G. frondosa	WC835	Hokken M-1	Japan	Commercial isolate on oak	Highlands
G. frondosa	WC836	Mori 51	Japan	Commercial isolate on oak	Highlands
G. frondosa	M001	$\begin{aligned} & \text { USDA FP- } \\ & \text { 101988-T } \end{aligned}$	Cooksville (Rock), WI	Soil near downed hardwood log (Quercus?)	Edge of Old Mill Pond at Hwy 59, Fire \#638
G. frondosa	M002	$\begin{aligned} & \text { USDA FP- } \\ & \text { 102464-Sp } \end{aligned}$	Madison, WI	Quercus, soil at base of dead stump.	N/A
G. frondosa	M003	$\begin{aligned} & \text { USDA FP- } \\ & 102464-T \end{aligned}$	Madison(Dane), WI	Quercus, soil at base of dead stump.	Picnic Point, UW campus
G. frondosa	M004	$\begin{aligned} & \text { USDA FP- } \\ & 103424-\mathrm{T} \end{aligned}$	Athens(Georgia), GA	Quercus nigra, at base	N/A
G. frondosa	M005	$\begin{aligned} & \text { USDA FP- } \\ & \text { 105867-Sp } \end{aligned}$	Beltsville (Prince George), MD	Quercus coccinea (scarlet oak) living, at base	Forest Disease Lab Station, Agr. Res. Center
G. frondosa	M006	$\begin{aligned} & \text { USDA FP- } \\ & 134675-S p \end{aligned}$	Madison (Dane), WI	Quercus, underneath	UW Arboretum
G. frondosa	M007	$\begin{gathered} \text { USDA FP- } \\ 47462 \end{gathered}$	WV	Quercus alba (white oak)	Plat \#55, at 1500 feet elevation, Devil's Hole
G. frondosa	M008	USDA RLG- 6889-Sp	Syracuse, NY	Quercus alba	N/A
G. frondosa	M009	$\begin{gathered} \text { USDA LOO- } \\ \text { 14980-T } \end{gathered}$	LA	Quercus snag, inside of hollow (oak)	N/A
G. frondosa	M010	USDA OKM-4954-T	Beltsville (Prince George), MD	N/A	Ground, Beltsville Expt Forest
G. frondosa	M011	USDA OKM- 6133-Sp	Washington(District of Columbia), DC	N/A	Rock Creek Park
G. frondosa	M012	USDA RLG- 14995-T	Baton Rouge, LA	Quercus virginiana	Memorial Grove, LA State U campus
G. frondosa	M013	$\begin{aligned} & \text { USDA L- } \\ & \text { 15552-Sp } \end{aligned}$	Syracuse, NY	N/A	N/A
G. frondosa	M014	$\begin{aligned} & \text { USDA RLG- } \\ & 6889-T \end{aligned}$	Syracuse, NY	Quercus alba	Oakwood Cemetery
G. frondosa	M015	$\begin{gathered} \text { USDA TJV-93- } \\ 130-\mathrm{T} \end{gathered}$	Madison(Dane), WI	Quercus macrocarpa, base of live	Turville Pt. Woods
G. frondosa	M016	FIRDI 36283	Taiwan	N/A	N/A
G. frondosa	M017	FIRDI 36286	Taiwan	N/A	N/A
G. frondosa	M018	FIRDI 36355	Taiwan	N/A	N/A
G. frondosa	M019	FIRDI 36356	Taiwan	N/A	N/A
G. frondosa	M020	FIRDI 36357	Taiwan	N/A	N/A
G. frondosa	M021	FIRDI 36434	Taiwan	N/A	N/A
G. frondosa	M029	PSUMCC 600	Taiwan	Commercial strain	N/A
G. frondosa	M030	PSUMCC 601	Taiwan	Commercial strain	N/A
G. frondosa	M031	PSUMCC 602	Taiwan	Commercial strain	N/A
G. frondosa	M032	PSUMCC 604	Taiwan	Commercial strain	N/A
G. frondosa	M033	PSUMCC 630	Taiwan	Commercial strain	N/A
G. frondosa	M034	PSUMCC 644	Taiwan	Commercial strain	N/A

Species	Isolate code	Source ${ }^{\text {a }}$	Geographic origin	Host/Substrate	Locality
G. frondosa	M035	$\begin{aligned} & \text { USDA RLG- } \\ & \text { 6889-Sp } \end{aligned}$	Syracuse, NY	Quercus alba	Oakwood Cemetery
G. frondosa	M036	X.W.Chen	China	N/A	N/A
G. frondosa	M037	X. W.Chen	China	N/A	N/A
G. frondosa	M038	ATCC 60891	China	N/A	N/A
G. frondosa	M039	Tan 0206	He Bei, China	N/A	N/A
G. frondosa	M40	M. Chen	China	Commercial strain	N/A
G. sordulenta	G01	ATCC 200416	Argentina	Nothofagus dombeyi trunk	N/A
P. umbellatus ${ }^{\text {c }}$	G02	ATCC 60546	N/A	N/A	N/A
M. giganteus ${ }^{\text {d }}$	G06	$\begin{aligned} & \text { USDA FP- } \\ & 135344-S p \end{aligned}$	England	Carpinus spp.	Virginia Waters
Ganoderma lucidium	WC724	T. Mitchel	PSU, PA		Lawn PSU Forest
${ }^{\text {a }}$ ATCC = American Type Culture Collection; USDA = The Unitied States Department of Agriculture; FIRDI = Food Industry Research and Development Institute, Taiwan; PSUMCC = Pennsylvania State University Mushroom Culture Collection. ${ }^{\mathrm{b}} \mathrm{N} / \mathrm{A}=$ not available. ${ }^{\text {c }}$ Polyporus umbellatus, synonym of Grifola umbellata. ${ }^{\text {d }}$ Meripilus giganteus, synonym of Grifola giganteus and Polyporus giganteus.					

3.2.2 DNA extraction

Cultures were grown in 50 ml of potato dextrose yeast broth (PDYB) for 20 to 30 days at room temperature. Mycelium was harvested by vacuum filtration on Whatman (grade \#1) filter paper, and washed once with distilled water. Fresh mycelium (100 mg) was used to isolate DNA following the LETS extraction procedure (Chen et al. 1999). DNA preparations were diluted with sterile water and used as template for PCR amplification.

3.2.3 PCR amplification and sequencing

PCR was performed in $25 \mu \mathrm{l}$ reactions with a 96 -well PCR cycler (PTC100 Programmable Thermal Controller, MJ Research, Inc.), using 10mg DNA template, one Unit of Taq DNA polymerase (Promega, Madison, WI), 0.2 mM of each dNTP, $2 \mathrm{mM} \mathrm{MgCl}, 0.1 \%$ Triton, as well as $0.5 \mu \mathrm{M}$ of each primer. Amplification of ITS-1, ITS-2, and 5.8 S rDNA was performed for all isolates utilizing primers ITS1AF (5'-TCCGTAGGTGAACCTGCGG-3') (White et al. 1990)
and ALR0 (5'-CATATGCTTAAGTTCAGCGGG-3') (Figure 3.1). PCR reactions for ITS regions were performed with the following parameters: $94^{\circ} \mathrm{C} / 1 \mathrm{~min} ; 35$

Figure 3.1. Locations of the primers for amplification of ITS-1, ITS-2 and 5.8 s rDNA gene regions of the rDNA repeat. cycles of $94^{\circ} \mathrm{C} / 15$ s, $60^{\circ} \mathrm{C} / 30 \mathrm{~s}$, $72^{\circ} \mathrm{C} / 1 \mathrm{~min}$; and $72^{\circ} \mathrm{C} / 5 \mathrm{~min}$. PCR Reactions for β tubulin regions were performed with two primer pairs BTG5F/BTG8R and BT1.1/B34R (Figure 3.2) with the following parameters: $94^{\circ} \mathrm{C} / 2 \mathrm{~min} ; 35$ cycles of $94^{\circ} \mathrm{C} / 15 \mathrm{~s}, 57^{\circ} \mathrm{C} / 30 \mathrm{~s}, 72^{\circ} \mathrm{C} / 1 \mathrm{~min}$; and $72^{\circ} \mathrm{C} / 7 \mathrm{~min}$. Primers BTG5F (5'-CGTTGTGCCCAGTCCTAAGGTG-3') and BTG8R (5'-GTTCTTGCTCTGCACGTTCTG-3') were used to amplify 51 isolates of G. frondosa, one isolate of G. sordulenta (G01), and one isolate of Polyporus umbellatus (G02). Isolate of Ganoderma lucidium were amplified using primers BT1.1 and B34R. Reactions were optimized by adjusting the concentration of template DNA and other reagents, and primer annealing temperature. Amplification products were electrophoresed on a 1.0\% agarose gel and checked to ensure that a single DNA band was produced of the expected size (~600bp for ITS PCR products and $\sim 680 \mathrm{bp}$ for β-tubulin PCR products). For sequencing, the PCR products were purified directly from reactions using the wizard PCR Preps System (Promega Corp., Madison, WI) with the concentration adjusted to $20 \mathrm{ng} / \mu \mathrm{l}$. Sequencing reactions were performed using the PCR primers and an ABI dye-terminator kit ($\mathrm{ABI} /$ Perkin-Elmer) and resolved using an ABI Prism ${ }^{\circledR}$ Model 377 automated sequencing system (Applied Biosystems, Foster City, CA).

Figure 3.2. Locations of primers used for PCR-amplification of the β-tubulin gene in Grifola frondosa, G. sordulenta (G01), Polyporus umbellatus (G02) and Ganoderma lucidium. Numbers indicate exons.

3.2.4 Sequence data analysis

Sequence ends were trimmed using the SeqMan II module in the Lasergene package (DNAStar, Inc. Madison, WI) and adjusted manually. All sequences then were edited and initially aligned using the clustal W algorithm (Higgins et al. 1991) in the Lasergene package (DNAStar, Inc. Madison, WI). Multiple alignment parameters used were gap penalty = 10 and gap length penalty $=10$. Final alignments then were optimized visually.

Phylogenetic analyses were completed using PAUP Version 4.0b4a (Swofford 2000). A neighbor-joining (NJ) tree was constructed using the Kimura 2 -parameter model. The stability of clades was evaluated by bootstrap tests with 1000 replications (Felsenstein 1985, Hills and Bull 1993). A maximum parsimony (MP) analysis was performed using heuristic searches with 1000 random addition searches. Other indices for the generated topology, including tree length, a consistency index (CI), as well as retention index (RI) were calculated. A strict consensus of the minimum length MP trees was calculated.

The partition homogeneity test (PHT) option in PAUP was used to determine whether the ITS and β-tubulin datasets are in conflict, using only
phylogenetically informative characters, with 1000 replicates. Gaps were considered missing data for all analyses. The combined data were used to find a consensus phylogeny. Ganoderma lucidium was chosen as an outgroup because the available partial Grifola ribosomal RNA large subunit sequence (Hibbett and Vilgalys 1992) indicated that Grifola is a member of the polyporoid clade, and that it is particularly closely related to Ganoderma/Lentinus clade (D. Geiser, personal communication, Hibbett et al. 1997).

3.3 Results

3.3.1 Phylogenetic relationship within Grifola frondosa

3.3.1.1 Analysis of ITS sequence data

Amplification of the ITS-1, ITS-2 and 5.8S ribosomal DNA repeat yielded fragments of approximately 600 bp as estimated by agarose gel electrophoresis. An alignments (Appendix A) including sequences of the isolate of G. sordulenta and all isolates of Grifola frondosa was generated. Grifola sordulenta was used as an outgroup in the phylogenetic analysis.

A Neighbor-Joining tree (Figure 3.3) was generated based on the alignment. Two major clades were identified within G. frondosa. Clade I included all of the U.S. isolates, while Clade II consisted of Asian isolates. The European isolate (WC493) was grouped with the U.S. isolates. Within the Asian clade, most of the isolates from China (M037, M038 and M039) and Japan (WC834, WC835 and WC835) tended to group together, while isolates from Taiwan and Korea were dispersed throughout this clade. Two Taiwan isolates (M019, M021) were distinct from all other Asian isolates and formed a subgroup. Two isolates of unknown origin (WC828 and WC685) were located in the Asian clade. This indicated that the major commercial isolate WC828 used on most
mushroom farms in the United States is probably of Asian decent. Within the U.S. clade, isolates did not show any distribution pattern related to their geographic state of origin.

The maximum parsimony (MP) analysis produced 424 equally parsimonious trees (length $=113$ steps, consistency index=0.796, retention index=0.911). The MP tree (Figure 3.4) retained a similar topology for most of the NJ trees.

Geographic origin

Figure 3.3. Phylogenetic analysis of 51 Grifola frondosa isolates based on rDNA ITS sequences using the neighbor-joining method with distance analysis calculated by the Kimura 2-parameter model. Geographic origin is listed beside isolate codes. Numbers on branches represent bootstrap values obtained from 1,000 replications (values greater than 60% were shown). Sidebars represent inferred clades based on geographic origin.

Figure 3.4. Maximum parsimony (MP) analysis of rDNA ITS sequences of Grifola frondosa isolates. One of 424 MP trees is shown. Braches with asterisks are maintained in the strict consensus tree. Numbers on the branches represent bootstrap values obtained from 1,000 replications (only values greater than 50% are shown). Sidebars represent inferred clades based on geographic origin.

3.3.1.2 Analysis of partial $\boldsymbol{\beta}$-tubulin sequence data

Amplicons (680bp) of the partial β-tubulin sequences contained 40bp of the 3 '-end of exons 5,6 and 7 , and $72 b p$ of the 5 '-end of exon 8 and introns 5,6 , and 7. These positions were identified based on their reported locations in Schizophyllum commune β-tubulin gene sequence and the identity of GT--AG splice junctions for introns. Isolate of Meripilus giganteus were not included in the analysis because of unsuccessful sequences.

The phylogenetic relationships of Grifola frondosa isolates were examined by aligning a sequence of G. sordulenta and sequences from 51 isolates of G. frondosa. The alignment (Appendix D) started 4bp of the 3'-end of exon 5 to 8bp of the 5 '-end to exon 8 of the partial β-tubulin gene sequence. Grifola sordulenta was used as an outgroup in the analysis.

A Neighbor-Joining tree (Figure 3.5) was generated based on partial β tubulin gene sequences. Two distinct clades, with strong bootstrap support (99% and 74%), were identified within G. frondosa. Clade I included all of the U.S. isolates, while clade II consisted of Asian isolates. The European isolate (WC493) was grouped within the Asian lineage with 95% bootstrap support. Two isolates of unknown origin (WC828 and WC685) were grouped with the Asian isolates. In the Asian clade, isolate WC828, used for commercial cultivation, was closely related to Japanese isolate WC835 with 78\% bootstrap support. Other strong bootstrap-supported clusters included 3 Korean isolates (WC556, WC557 and WC582) and 3 Taiwan isolates (M019, M020 and M021). A Korean isolate, WC555 constituted a unique branch in this clade. In the U.S. clade, 3 isolates (M007, M101 and WC248) formed a sister group with other U.S. isolates (94\% bootstrap support).

The maximum parsimony (MP) analysis based on partial β-tubulin gene sequence alignment (Appendix D) produced 48,100 trees until PAUP was aborted because of lack of memory. One MP tree (length=251 steps, consistency index $=0.793$, retention index $=0.932$) from 5,000 equally parsimonious trees is shown in Figure 3.6. Despite the large number of equally parsimonious trees, the strict consensus tree was highly resolved.

Similar to the NJ tree, two clades (U.S. and Asian clades) were observed within isolates of G. frondosa with strong bootstrap support (97% and 91%, respectively). The European isolate (WC493) formed a collapsed branch within the Asian clade and the commercially-used isolate (WC828) of unknown origin grouped with the Asian isolates. The MP tree also showed the same subgroups in the U.S. and Asian clades as did the NJ tree.

Figure 3.5. Phylogenetic analysis of 51 Grifola frondosa isolates based on partial β-tubulin gene sequences using the neighbor-joining method with distance analysis calculated by the Kimura 2parameter model. Geographic origin is shown beside isolate codes. Numbers on branches represent bootstrap values obtained from 1,000 replications (values greater than 70% were shown). Sidebars represent inferred clades based on geographic origin.

Figure 3.6. Maximum parsimony (MP) analysis of partial β-tubulin gene sequences of 51 Grifola frondosa isolates. One of 5,000 equally parsimonious trees is shown. Braches with asterisks maintain in the strict consensus tree. Numbers on the branches represent bootstrap values obtained from 1,000 replications (only values greater than 70% are shown). Sidebars represent inferred clades based on geographic origin.

3.3.1.3 Analysis of combined rDNA and partial β-tubulin gene sequence data

A DNA sequence alignment was generated by combining both datasets of rDNA and partial β-tubulin gene sequences. A Neighbor-Joining tree (Figure 3.7) was generated based on the combined data. It supported most of the results produced by rDNA and β-tubulin separately. Two independent clades - the U.S. and Asian clades were strongly supported by high bootstrap values (100\% and 98%, respectively). The European isolate (WC493) was grouped in the Asian clade with 89% bootstrap support, and agrees with the results from the β-tubulin data alone. Two of the unknown origin isolates (WC828 and WC685) were grouped in the Asian clade. Isolate WC828 was observed closely related to Japanese isolate WC835 with 82\% bootstrap support. Two Taiwanese isolates (M019, M021) grouped strongly and distinct from other Asian isolates. In the U.S. clade, 3 isolates (M007, M010 and WC248) clustered together.

The maximum parsimony (MP) analysis, based on combined dataset produced 405 equally parsimonious trees. One MP tree (length=382 steps, consistency index $=0.741$, retention index $=0.901$) is shown in Figure 3.8. It retained a similar topology, for the most part, to the NJ trees. Two clades, that separated U.S. and Asian isolates, were observed with strong bootstrap support.

Figure 3.7. Phylogenetic analysis of 51 Grifola frondosa isolates based on a combination of rDNA and partial β-tubulin gene sequences using the neighbor-joining method with distance analysis calculated by the Kimura 2-parameter model. Geographic origin is shown beside isolate codes. Numbers on branches represent bootstrap values obtained from 1,000 replications (values greater than 80% were shown). Sidebars represent inferred clades based on geographic origin.

Figure 3.8. Maximum parsimony (MP) analysis of combined rDNA and partial β-tubulin gene sequences of 51 Grifola frondosa isolates. One of 405 equally parsimonious trees is shown. Braches with asterisks are maintained in the strict consensus tree. Numbers on the branches represent bootstrap values obtained from 1,000 replications (only values greater than 70% are shown). Sidebars represent inferred clades based on geographic origin.

3.3.2 Phylogenetic relationship among Grifola frondosa and allies

The phylogenetic relationship among G. frondosa and its allies was analyzed by aligning partial β-tubulin gene sequences alone. An unambiguous alignment was not achieved because of the high nucleotide variation in ITS regions between G. frondosa and its allies (Chapter 2, this thesis). The alignment (Appendix E) included exons 6 and 7 of β-tubulin gene sequences of Ganoderma lucidium, eight isolates of G. frondosa (M009, M004, WC493, WC659, M030, WC835, WC828 and M037; all with different geographic origins) and one isolate each of G. sordulenta (G01) and Polyporus umbellatus (G02). Ganoderma lucidium was included for rooting purposes. Introns were excluded from the analysis because of an ambiguous alignment.

Both neighbor joining (NJ) and maximum parsimony (MP) analyses revealed a distinct G. frondosa clade with strong bootstrap support (100\%). A NJ tree is shown in Figure 3.9. MP analysis produced 4 trees. One MP tree (length $=155$ steps, consistency index $=0.845$, retention index $=0.704$) is shown in Figure 3.10. Isolate P. umbellatus G02 showed a closer relationship with G. frondosa than with isolate G. sordulenta (G01). Based on these data, it appears that P. umbellatus and G. sordulenta share a common ancestor with G. frondosa and should be grouped into Grifola.

Figure 3.9. Phylogenetic analysis of Grifola frondosa and its allies based on partial β-tubulin gene sequences using the neighbor-joining method with distance analysis calculated by the Kimura 2-parameter model. Numbers on branches represent bootstrap values obtained from 1,000 replications (values greater than 70% were shown). Sidebars represent inferred clades based on geographic origin.

Figure 3.10. Maximum parsimony (MP) analysis of partial β-tubulin gene sequences of eight Grifola frondosa isolates and its allies. One of four equally parsimonious trees is shown. Numbers on the branches represent bootstrap values obtained from 1,000 replications (only values greater than 50% are shown). Sidebars represent inferred clades based on geographic origin.

3.4 Discussion

3.4.1 Relationships within Grifola frondosa

Isolates of G. frondosa (51) used in this study clearly clustered into two clades (U.S. and Asian clade) in both NJ and MP analysis based on either rDNA, β-tubulin, or combined sequence analyses. Two clades were well supported by the bootstrap test in both β-tubulin and combined datasets. Based on combined data, the NJ analysis showed 100% bootstrap support for the U.S. clade and 89\% for the Asian clade (Figure 3.7). The MP analysis supported the U.S. clade with 97% and the Asian clade with 84% bootstrap values (Figure 3.8). A partition homogeneity test (PHT) (Farris et al. 1995, Huelsenbeck et al. 1996), which was used to determine whether the rDNA and partial β-tubulin gene sequence data were in significant conflict, was not successful because PAUP ran out of memory. Although the PHT test was not performed, the strong bootstrap results suggest that U.S. and Asian clades are distinct groups and may be evolving independently.

Previous taxonomic studies on G. frondosa were mostly based on isolates collected by authors from certain geographic areas. For example, Zhao and Zhang (1992) examined only Chinese isolates, while Gilbertson and Ryvarden (1986) examined North American isolates. No morphological differences were found according to the character descriptions in their monographs, which include basidiome, basidiospores, habitat and context hyphal system. No mating tests between the U.S. and Asian isolates have been conducted to determine if they are different biological species. Using a molecular phylogenetic species concept potentially would allow recognition of changes in gene sequences long before changes in mating behavior or morphology became evident (Taylor et al. 2000).

Previously, Grifola frondosa was primarily found in Europe and was named Boletus frondosus Dicks. (Dickson 1785). Later, Polyporus frondosus (Dicks.) Fr. (Fries 1821) and G. frondosa (Dicks.: Fr.) S.F. Gray (Gray 1821) were identified (both based on European isolates). However, the phylogenetic relationship of the single European isolate (WC493) to other isolates is not clearly resolved. Based on combined ITS and β-tubulin and β-tubulin sequence data, both NJ and MP analysis showed WC493 shared a common ancestor with Asian isolates with high bootstrap support. However, rDNA sequence data did not support this result and NJ analysis indicated that WC493 has a closer relationship with the U.S. isolates (Figure 3.3). This grouping was not strongly supported by bootstrap analysis (67\%), however.

3.4.2 Relationships between Grifola frondosa and its allies

Traditional taxonomic studies (Gilbertson and Ryvarden 1986, Zhao and Zhang 1992) show that Grifola sordulenta, P. umbellatus and M. giganteus share

Figure 3.11. Basidiomes of M. giganteus formed on sawdust substrate. many common characters and suggest that they are very closely related species (Table 3.2). However, the influence of environmental conditions on morphological characteristics of mushroomforming fungi is usually significant and often makes identification difficult. Figure 3.11 shows the basidiome formed by M. giganteus under our cultivation conditions. Apparently, our environmental conditions were different than the conditions found in the wild and produced a totally different mushroom. Unfortunately, P. umbellatus G02 and G. sordulenta did not fruit in our cultivation rooms.

Table 3.2. Morphological characters or traits of Grifola frondosa, Meripilus giganteus, Polyporus umbellatus and Grifola sordulenta.

Character or Trait	G. frondosa	M. giganteus	P. umbellatus	G. sordulenta
Stipe	lateral branched	lateral branched	central branched	Lateral or central branched
Spore	smooth	smooth	smooth, larger and more cylindrically shaped	smooth, subglobose to short ellipsoid or ellipsoid
Generative hyphae	clamp connections	simple septate	clamp connections	clamp connections
Hyphal system	dimitic with skeletal hypha	monomitic	dimitic with binding hypha	not available
Rot Type	white			
Basidiome	white-pale brown			
Color of context or pore surface	poroid			
Hymenophore				

Source: Gilbertson and Ryvarden (1987), Singer (1969).

Recent molecular evidence based on nuclear small subunit (nuc-ssu) rDNA, nuclear large subunit (nuc-lsu) rDNA and mitochondrial small subunit (mtssu) rDNA (Hibbett 2000) showed that G. frondosa has a closer phylogenetic relationship with other members of the Polyporaceae, such as Laetiporus porteutosus than with M. giganteus. No previous reports have centered on the evolutionary history of P. umbellatus and G. sordulenta. My results suggest that this relationship still is unresolved. Based only on β-tubulin gene dataset, P. umbellatus was grouped within the Grifola clade. However, no strong bootstrap values supported this relationship. Meripilus giganteus was not included in the phylogenetic analysis bacause of the high nucleotide variation in ITS and β tubulin gene between it and G. frondosa. More sampling of isolates and the use of more conservative genes may help to better understand the phylogenetic relationships between G. frondosa and its allies.

In view of medicinal qualities of these mushrooms, there are many similarities between G. frondosa, P. umbellatus and M. giganteus. Polyporus umbellatus and M. giganteus are called tonbimaitake and choreimaitake,
respectively, in Japan (Mizuno and Zhuang 1995). They are edible (Arora 1986, Bessette et al. 1997) and have been documented for use as Chinese medicine 2000 years ago (Ying et al. 1987). Similar to G. frondosa, both are known to produce antitumor activity against cancer when ingested orally. Their medicinal qualities have been utilized in Chinese medicine from ancient times (Jong and Birmingham 1990, Ying et al. 1987). A clearer understanding of the evolutionary relationships of these fungi may be useful in broadening the search for additional anti-cancer substances.

3.4.3 Molecular phylogenetic analysis based on combined gene sequences

Use of a single gene to construct phylogenetic trees may not result in true representation of the phylogeny of the taxa under study (Nei 1987). To help alleviate this problem, more than one gene may be used to reconstruct a phylogeny (Li 1997). In this study, rDNA and β-tubulin were used. The characteristics of the rDNA, β-tubulin and combined regions summarized in Table 3.3. When the relationship within isolates of G. frondosa was analyzed, 87 phylogenetically informative nucleotide sites in a combined sequence (25 in rDNA and 62 in β-tubulin) were used (Table 3.3). The total number of sites of rDNA (574) and β-tubulin (587) were similar. However, β-tubulin has more variable sites (177) than rDNA (82). β-tubulin also has more phylogenetically informative sites (62) than rDNA (25).

Table 3.3. Summary of sequence alignments ${ }^{a}$ of rDNA, β-tubulin and combined datasets for Grifola frondosa.

	rDNA	β-tubulin	Combined
Total nucleotide (nt) sites	574	587	1161
nt sites in variable gene regions (introns for β-tubulin and ITS1\&2 for rDNA)	416	182	598
nt sites in conserved gene regions (exons for β-tubulin and 5.8S for rDNA)	158	405	563
Variable nt sites	82	177	259
Phylogenetically informative nt sites	25	62	87

[^1]
3.4.4 Phylogeny of commercial mushroom cultivars

Both neighbor joining (NJ) and most parsimonious (MP) trees derived from all DNA datasets revealed a consistent grouping of U.S. commercial cultivar WC828 in the Asian clade. This suggested that WC828 has an Asian origin and is closely related to Asian commercial cultivars. It is known that molecular data can be effectively used to select and improve commercial lines of edible mushrooms (Thon and Royse 1999b). So, a better understanding of the phylogenetic relationships of Grifola frondosa may help the selection and breeding of commercial lines and help to improve commercial cultivation of these mushrooms.

Chapter 4: Effects of germplasm and selected nutrient supplements on mushroom yield

4.1 Introduction

Grifola frondosa (Dicks.:Fr.) S.F. Gray, commonly known as hen-of-thewoods or maitake, is considered one of the most popular choice edible mushrooms (Lincoff 1981a,b). It is a white rot, wood decay fungus that naturally inhabits many hardwood species in Asia, North America, and Europe. The annual commercial production (Figure 1.1) of maitake has continued to increase dramatically because of its excellent taste, and nutritional and medicinal values. Presently, most maitake is marketed as food. Powdered fruitbodies are also used in the production of many health foods such as maitake tea, whole powder, granules, drinks, and tablets (Royse 1997).

Maitake is well known for centuries in China and Japan both as a health food and as a medicine (Mizuno and Zhuang 1995). It has received increasing attention in recent years because of documented anti-tumor and anti-viral properties (Hobbs 1996, Jong et al. 1991). Strong consumer demand has stimulated increased production world wide. Maitake production and consumption also is increasing rapidly in the United States (up 38\% 1999-2000). Figure 4.1 shows world annual production increases of maitake in the last 20 years. Commercial production of maitake began in 1981 in Japan (Takama et al. 1981). It increased 577.8% from 1981 to 1986. In the next 5 years (1986-1990), production increased 250.1%, and then 84.1% from 1990-1994. The most recent published production data is 33,100 tons in 1997, which is a 133.1% increase compared with 1994. Production increases for maitake are much higher than that of total world mushroom production and especially the most common cultivated edible mushroom (Agaricus bisporus). The production increases of
maitake are also higher than the most popular cultivated specialty mushroom shiitake (Lentinula edodes), except in the 1990 to 1994 period.

Figure 4.1. Percentage increases of world production of maitake (Grifola frondosa), shiitake (Lentinula edodes), button (Agaricus bisporus) and all mushrooms during various periods from 1981 to 1997. (Source: Chang 1999)

Bag, bottle and outdoor bed cultivation are the three basic methods of

Figure 4.2. Cultivated Grifola frondosa (maitake) emerging from nutrient supplemented sawdust contained in polypropylene bags. commercial production of maitake (Mayuzumi and Mizuno 1997). Commercial production of most maitake is on synthetic substrate contained in polypropylene bags (Figure 4.2). After sterilization and cooling, the moistened substrate is inoculated with maitake spawn. Spawn run lasts about 30 to 60 days depending on isolate and substrate formulation. Temperatures then are lowered from about $22^{\circ} \mathrm{C}$ to $14^{\circ} \mathrm{C}$ to induce fruiting and fruitbody maturation (Royse 1997). For bottle production, the containers are filled with moistened substrate and sterilized or pasteurized prior to inoculation (Royse 1997). Most growers use automated inoculation equipment thereby saving on labor costs (Yamanaka
1997). However, the size of the harvested mushroom is smaller than those harvested from bags because there is less substrate in bottles. Different from bag and bottle cultivation, outdoor bed cultivation is on colonized substrate buried in moist soil (Mayuzumi and Mizuno 1997). It requires a long crop cycle (about six months), and yields are much lower than those of bag or bottle methods.

There still are limited reference texts available for producing maitake. Presently, the techniques used to grow maitake are mostly adopted from other specialty mushroom cultivation, such as shiitake. Fortunately, extensive research has been done on efficient methods, genotypes and nutritional formulation of specialty mushrooms other than maitake (Douglas and Royse 1986, Royse and Bahler 1988, Royse et al. 1990). A common substrate used for commercial production of maitake is supplemented sawdust. Oak (Lee 1994, D.J. Royse, unpublished data) is the most popular choice in the United States and Japan, while beech (Kirchhoff 1996, Yoshizawa et al. 1997) and larch (Stamets 2000) are also preferred to a lesser extent in Japan. In China, cottonseed hulls were used as a substitute for sawdust with acceptable yields (Zhao et al. 1983). Bran derived from cereal grains, such as rice bran (Takama et al. 1981), wheat bran (Mayuzumi and Mizuno 1997), oat bran and corn bran, are widely used as nutrient supplements. Other nutrient supplements used for maitake cultivation include millet (D.J. Royse, unpublished data), corn meal (Kirchhoff 1996), and soybean cake (Mizuno and Zhuang 1995).

No published research on genotypes of maitake used for commercial production was found, partially because of the short cultivation history of this mushroom. It was found that the presently used commercial lines in Japan, China, Taiwan and the U.S. have different geographic origins, with different levels of genetic variation (Chapter 3, this thesis).

The rapid growth of maitake production has focused the need for additional research in two areas. First, a search is needed for isolates with improved yield and quality characteristics. To assist with this search, I evaluated 23 genotypes of Grifola frondosa for crop cycle time, biological efficiency (BE), yield and quality. Significant differences among lines were found for these parameters when mushrooms were produced on a nutrient supplemented sawdust substrate. Second, there is a desire to develop more efficient substrate formulas to improve yield and quality and to shorten the crop cycle. In this study, nine experiments were conducted to determine the effects of selected nutrient supplements and their levels on maitake crop cycle time, BE, yield and quality. Significant differences among different formulations were found and the best combinations of nutrient supplements among those tested were identified. For continued growth of the commercial industry, efforts directed toward improving biological efficiency, yield, quality, and reduced time to primordium formation and harvest are desirable.

4.2 Materials and Methods

4.2.1 Substrates and preparation

The major substrate ingredient - mixed oak sawdust (mostly Quercus rubra L.) was obtained from a local sawmill in Centre Country, Pennsylvania with approximately 30% moisture. The general substrate formulation (dry weight basis) consisted of 74.8% mixed oak sawdust, 15% white millet (Panicum miliaceum L.), 10% wheat bran (Triticum aestivum L.) and 0.2% gypsum $\left(\mathrm{CaSO}_{4}\right)$. Moisture content of the substrate was adjusted to $55 \%-58 \%$ of the fresh weight. This formula was initially chosen to determine the effects of genotypes on mushroom yield because previous experiments indicated reasonable growth (D.J. Royse, unpublished data). All ingredients were combined, mixed, pasteurized, cooled, inoculated, and bagged with an
autoclaving paddle mixer described previously by Royse (1985). Dry matter contents of the processed substrates were determined by drying 100 g of the processed substrates in an oven for 24 hours at $105^{\circ} \mathrm{C}$.

4.2.2 Genotypes

Twenty three isolates (Table 4.1) of maitake (G. frondosa) from our collection (Table 2.1) were evaluated for the effects of genotypes on crop cycle time, yield and quality. Four isolates were selected because they are commercially used cultivars in the U.S. (WC828), China (M040) and Japan (WC835 and WC836). The isolates M019, M036, M037, M038, M039, WC582, WC659 and WC834 were selected from the same clade as the commercial isolates as determined by phylogenetic analysis (Figure 4.3). The U.S. isolates M002, M004, M007, M009, M011, M013, M014, M015, WC248 and W483 were selected because they are most genetically distinct from commercial isolates (Figure 4.3) and each represented the geographic origin from a state of the U.S. Isolate WC493 is a European isolate without a cultivation history. The isolates were maintained on potato-dextrose-yeast extract agar (PDYA) as outlined by Jodon and Royse (1979).

Table 4.1. Isolates and geographic origin of Grifola frondosa (maitake) used for genotype selection experiments.

Isolates	Geographic origin
M002	U.S.-WI
M004	U.S.-GA
M007	U.S.-WV
M009	U.S.-LA
M011	U.S.-DC
M013	U.S.-NY
M014	U.S.-NY
M015	U.S.-WI
M019	Taiwan
M036	China
M037	China
M038	China
M039	China
M040	China/commercial
W483	U.S.-MD
WC248	U.S.-PA
WC493	Norway
WC582	Korea
WC659	Korea
WC828	unknown/commercial in U.S.
WC834	Japan
WC835	Japan/commercial
WC836	Japan/commercial

The isolates were screened on a general formula (dwt basis) containing 74.8% mixed oak sawdust, 15% millet, 10% wheat bran, and $0.2 \% \mathrm{CaSO}_{4}$. Isolate WC828 was selected for the nutrient experiments based on the evaluation of crop cycle time, quality, yield and biological efficiency (Results, chapter 4, this thesis).

Geographic origin

Figure 4.3. The neighbor-joining (NJ) tree containing 23 Grifola frondosa isolates selected for genotype selection experiments based on combined rDNA and partial β-tubulin gene sequences. Geographic origin is presented beside isolate codes. Isolate numbers highlighted in boxes are of commercial origin.

4.2.3 Spawn, spawn run, primordial development and fruitbody development

Spawn was prepared in 500 ml flasks following a spawn formula (100 ml beaker level full of Stanford mushroom rye grain, 50 ml beaker of hardwood sawdust, one-half teaspoon CaSO_{4}, and 120 ml of warm tap water, D.J. Royse, unpublished) known to support good growth of maitake mycelium. After inoculation with spawn, polyethylene bags were used to contain moist (55-58\%)

Figure 4.4. Taped polypropylene bags with basidiomes developing from substrate directly under holes cut in bags. Mushrooms maturing approximately 70 days after inoculation. substrates (2650 grams per bag) for incubation. Spawn run temperature was maintained at $20 \pm 1^{\circ} \mathrm{C}$. The bags were sealed with a twist tie and, after the spawned substrate was incubated for one week, 20 slits (5 mm long) were made at the top of each bag with a sharp scalpel to provide for gas exchange.

Spawn run is the period from the beginning of inoculation to primordia formation. After primordia formation, two holes were cut in the polyethylene bags exposing the developing primordia. The top of the bag was folded over, exposing only the developing primordia to the fruiting environment. Taped bags (Figure 4.4) then were moved to a production room for fruiting. The period of fruitbody development was initiated when the primordia began to grow and differentiate to form small pilei and stipes. A crop cycle of 12 weeks or less was considered short based on our experience and compared to the 15 -week crop cycle reported by Stamets (2000).

4.2.4 Experimental design

All experiments (Table 4.2) were conducted as completely randomized designs and carried out at the Mushroom Research Center of the Pennsylvania State University under the same conditions. Environmental conditions were as described by Royse (1985). Relative humidity (90 to 95%) was maintained by water atomizers placed in air handling ducts, 4 hours of light were provided daily by cool-white fluorescent bulbs, and temperature was maintained at $17 \pm 2^{\circ} \mathrm{C}$. Sufficient air changes were maintained to hold CO_{2} concentrations below 700 ppm ($\mu / / /$).

SAS program JMP (SAS Institute 1997) was used to analyze data. The general linear models procedure was used to perform an analysis of variance. Treatments with zero value were excluded from the data analysis. Tukey-Kramer Honestly Significant Difference (HSD) was used to separate treatment means (SAS Institute 1997). When two crops were performed for one experiment, the significant difference between two crops was determined by a two-way analysis of variance. Both crops were analyzed separately and the combined data were analyzed if there were no significant differences between two crops for BE and quality.

Table 4.2. Description of 13 experiments performed to determine effects of genotypes and nutrient supplements on crop cycle time and mushroom yield and quality.

Experiment number	Number of crops	Number of replicates	Supplementation level (\%)	Description/Purpose
1	2	15	25	Genotypes
2	1	15	25	
3	1	15	25	Selected nutrient supplements
4	2	15	25	
5	2	10	20	Different levels of wheat bran and millet
6	1	10	10	
7	1	10	20	Different levels of wheat bran and rye
8	1	10	30	
9	1	10	10	Different levels of wheat bran, millet and rye
10	1	10	20	
11	1	10	30	
12	2	10	20	

Four genotype experiments (Experiment \#1-\#4) were conducted to determine the effects of genotypes on crop cycle time, yield and quality with 15 replicates for each treatment while Experiment \#1 evaluated 5 isolates (WC828, WC835, WC836 WC659 and WC834). Experiment \#2 evaluated seven isolates (M040, M007, M014, WC493, WC248 and WC582). Seven isolates (M036, M002, M009, M011, M013, M019, WC483) were evaluated in Experiment \#3. Experiment \#4 tested seven isolates (WC828, M036, M37, M038, M039, M040 and M015). Two crops were performed for Experiments \#1 and \#4 with the same experimental design and similar environmental conditions.

One nutrient experiment (Experiment \#5) was designed to determine the influence of selected nutrient supplements on mushroom yield with 10 replicates for each treatment. Two crops were performed and 20% total selected nutrient supplements were used. Selected nutrient supplements included wheat bran and different types of cereal grain, such as millet, rye, and corn meal. Different combinations of these supplements were tested by adding them to a basal substrate of sawdust which included 79.8% mixed red and white oak plus 0.2% CaSO_{4}. Table 4.3 shows the treatments with proportions of selected nutrient supplements in a basal substrate according to a simplex centroid mixture design (SAS Institute, 1997).

Table 4.3. Simplex centroid mixture design listing treatment numbers and supplements added to 79.8% oak sawdust plus 0.2% gypsum $\left(\mathrm{CaSO}_{4}\right)$ used for production performance of isolate WC828 of Grifola frondosa (Experiment \#5).

	Supplement (\%)			
Treatment	Wheat Bran	Millet	Rye	Corn meal
1	20	0	0	0
2	0	20	0	0
3	0	0	20	0
4	0	0	0	20
5	10	10	0	0
6	10	0	10	0
7	10	0	0	10
8	0	10	10	0
9	0	10	0	10
10	0	0	10	10
11	6.7	6.7	6.7	0
12	6.7	6.7	0	6.7
13	6.7	0	6.7	6.7
14	0	6.7	6.7	6.7
15	5	5	5	5

In order to evaluate the effects of different levels of selected nutrient supplements on mushroom crop cycle, yield and quality, eight nutrient level experiments (\#6-\#13) were performed with 10 replicates for each treatment. The combinations of selected nutrient supplements of wheat bran, millet and rye were used in these experiments based on the results of nutrient Experiment \#5 (Result, chapter 4, this thesis). The selected nutrient supplements used in experiments \#6, \#7 and \#8 were wheat bran plus millet. In experiments \#9, \#10 and \#11, wheat bran plus rye were used as the selected nutrient supplements. Three levels of total nutrient supplements (10\%, 20\%, and 30\%) were tested for each combination. The combinations of wheat bran, millet plus rye were used as nutrient supplements in experiments \#12, \#13. Two levels of total nutrient supplements (20% and 30%) were tested for each experiment. Table 4.4 to Table 4.11 list the treatments in each of the 9 experiments. Only one crop was conducted for Experiments \#6, \#7, \#8, \#9, \#10 and \#11, while two crops were conducted for Experiments \#12 and \#13.

Table 4.4. Treatment numbers and nutrient mixtures for production of Grifola frondosa (WC828) on oak sawdust (89.8\%) and gypsum (0.2\%) at the Mushroom Research Center (Experiment \#6).

	Supplement (\%)	
Treatment	Wheat bran	Millet
1	0	10
2	2.5	7.5
3	5	5
4	7.5	2.5
5	10	0

Table 4.5. Treatment numbers and nutrient mixtures for production of Grifola frondosa (WC828) on oak sawdust (79.8\%) and gypsum (0.2\%) at the Mushroom Research Center (Experiment \#7).

	Supplement (\%)	
Treatment	Wheat bran	Millet
1	0	20
2	5	15
3	10	10
4	15	5
5	20	0

Table 4.6. Treatment numbers and nutrient mixtures for production of Grifola frondosa (WC828) on oak sawdust (69.8\%) and gypsum (0.2\%) at the Mushroom Research Center (Experiment \#8).

	Supplement (\%)	
Treatment	Wheat bran	Millet
1	0	30
2	7.5	22.5
3	15	15
4	22.5	7.5
5	30	0

Table 4.7. Treatment numbers and nutrient mixtures for production of Grifola frondosa (WC828) on oak sawdust (89.8\%) and gypsum (0.2\%) at the Mushroom Research Center (Experiment \#9).

	Supplement (\%)	
Treatment	Wheat bran	Rye
1	0	10
2	2.5	7.5
3	5	5
4	7.5	2.5
5	10	0

Table 4.8. Treatment numbers and nutrient mixtures for production of Grifola frondosa (WC828) on oak sawdust (79.8\%) and gypsum (0.2\%) at the Mushroom Research Center (Experiment \#10).

	Supplement (\%)	
Treatment	Wheat bran	Rye
1	0	20
2	5	15
3	10	10
4	15	5
5	20	0

Table 4.9. Treatment numbers and nutrient mixtures for production of Grifola frondosa (WC828) on oak sawdust (69.8%) and gypsum (0.2%) at the Mushroom Research Center (Experiment \#11).

	Supplement (\%)	
Treatment	Wheat bran	Rye
1	0	30
2	7.5	22.5
3	15	15
4	22.5	7.5
5	30	0

Table 4.10. Treatment numbers and nutrient mixtures for production of Grifola frondosa (WC828) on oak sawdust (79.8\%) and gypsum (0.2\%) at the Mushroom Research Center (Experiment \#12).

	Supplement (\%)		
Treatment	Wheat bran	Millet	Rye
1	0	0	20
2	0	6.7	13.3
3	0	13.3	6.7
4	0	20	0
5	6.7	0	13.3
6	6.7	6.7	6.7
7	6.7	13.3	0
8	13.3	0	6.7
9	13.3	6.7	0
10	20	0	0

Table 4.11. Treatment numbers and nutrient mixtures for production of Grifola frondosa (WC828) on oak sawdust (69.8\%) and gypsum (0.2\%) at the Mushroom Research Center (Experiment \#13).

	Supplement (\%)		
Treatment	Wheat bran	Millet	Rye
1	0	0	30
2	0	10	20
3	0	20	10
4	0	30	0
5	10	0	20
6	10	10	10
7	10	20	0
8	20	0	10
9	20	10	0
10	30	0	0

4.2.5 Harvesting and determination of BE and quality.

Mushrooms were harvested from the substrate when the caps were fully mature. The substrate clinging to the main stipe was removed and the clusters of mushrooms were weighed. The biological efficiency (BE) was determined as the ratio of kg fresh mushrooms harvested per kg dry substrate and expressed as a percentage (Royse 1992). The quality of maitake was evaluated by the
shape and color of the basidiome and rated as 1 to 4 (Table 4.12) (Kunitomo 1992).

Table 4.12. The quality scale (1-4) for maitake.

4.3 Results

4.3.1 Effects of germplasm on crop cycle time

A total of 23 isolates were evaluated in four experiments. The results are shown in Table 4.13 (Appendix F). Five isolates - two Korean isolates (WC582, WC659) and four U.S. isolates (M014, M011 and M007) colonized the substrate,
but the mycelium grew poorly and did not form primordia. Two U.S. isolates (M002 and WC248), one Taiwan isolate (M019) and one Japanese isolate (WC834) formed primordia, but did not produce mushrooms. Four U.S. isolates (M004, M009, M013 and WC483) and the European isolate (WC493) produced mushrooms, but consistent fruiting was not achieved. Some replicates in each treatment did not produce mushrooms while some replicates completed the whole crop cycle. In most cases, more than half of the replicates did not produce mature mushrooms. Mushrooms were consistently produced by five Chinese isolates (M036, M037, M038, M039 and M040), two Japanese isolates (WC835 and WC836), one U.S. isolate (M015) and an U.S. commercial isolate with unknown origin (WC828). For a better understanding of the genetic variation among these isolates, a phylogenetic tree is presented in Figure 4.5.

Geographic origin

Figure 4.5. Phylogenetic relationships of 23 Grifola frondosa isolates selected for fruiting trials. Phylogenies are based on combined rDNA and partial β-tubulin gene sequences. Geographic origin is shown beside the isolate codes. Cultures highlighted in box are of commercial origin. Colors indicate: a) red - isolates which completed whole crop cycle and consistently fruited, b) black - isolates which did not consistently fruit, but some completed the crop cycle, c) Blue - isolates that only formed primordia, but did not fruit, d) Green - isolates that did not form primordia.

In Experiment \#1, WC828 showed the shortest time to primordium formation (5 weeks) and fruiting (8 weeks). In Experiment \#4, M039 showed the shortest crop cycle of 8 weeks, with 4 weeks to form primordia and 6 weeks to produce fruitbodies. Results of experiments \#1 and \#4 are summarized in Figure 4.6.

Experiments \#2 and \#3 were discontinued and a second crop was not conducted because most of the isolates did not complete the crop cycle and had no yield data. Further evaluation of 14 isolates (WC493, WC483, M004, M009, M013, WC834, WC248, M019, M002, WC582, WC659, M014, M011 and M007) in Experiments \#2 and \#3 was terminated, except for isolates M036 and M040, which were also included in Experiment \#4. Thus, yield performance and quality assessment of these two isolates were evaluated in Experiment \#4.

Figure 4.6. Summary of crop cycle time (wk) showing spawn run time and primordia and fruitbody development of 11 isolates of Grifola frondosa grown on sawdust substrate supplemented with 25% nutrient at The Mushroom Research Center (Experiment \#1 and \#4). Treatment descriptions are given in Table 4.13 (Appendix F).

4.3.2 Effects of germplasm on quality and yield

Statistical analysis of BE and quality data for two crops of Experiment \#1 and \#4 were shown in Table 4.14 (Appendix F). Isolates WC828, WC835, WC836, M015, M036, M037, M038, M039 and M040 were included in this analysis.

Significant differences in BEs and quality were found among the three isolates evaluated in Experiment \#1 (Table 4.14A) (Appendix F). In crop I, BEs ranged from $35.4 \%(\mathrm{WC} 828)$ to 21.4% (WC836). Quality ranged from 1.2 (WC836) to 2.9 (WC835). In crop II, BEs ranged from 33.5\% (WC828) to 21.2\% (WC835). Quality ranged from 1.1 (WC836) to 3.0 (WC835). Although the actual BEs and quality were different in two crops, isolate WC828 had the highest BEs and significantly higher than WC835 and WC836 in crop I and only significantly higher than WC835 in crop II. The quality of WC835 was significantly lower than other two isolates. There was no significant difference of quality between WC828 and WC836 in two crops. Combined data of crop I and II were analyzed because no significant differences for BE and quality between two crops were found. The results are shown in Figure 4.7. Isolate WC828 had the highest BE (34.5\%). Isolates WC836 and WC828 had the highest qualities (1.2 and 1.4, respectively).

Figure 4.7. Graphic summary of means of BEs (left) and quality (right) of combined data of two crops of Grifola frondosa to determine the effect of three genotypes (Experiment \#1). Treatments highlighted in bold font showed significantly higher BEs or quality in the experiment. Quality was rated 1-4 with 1 being the highest quality while 4 was the lowest quality rating. Treatment descriptions are shown in Table 4.14 (Appendix F).

In Experiment \#4, significant differences in BEs and quality were found among seven isolates evaluated (Table 4.14B) (Appendix F). In crop I, BEs ranged from 37.6% (M040) to 31.3% (M038). Quality ranged from 1.2 (M038 and M040) to 2.0 (M039). Isolates WC828, M036, M037, M038 and M040 had the best quality. Isolate M038 produced the lowest BE of all isolates tested. Isolate M015 produced the lowest quality mushroom. In crop II, BEs ranged from 42.6\% (M036) to 30.1% (M015). Quality ranged from 1.1 (WC828, M038 and M040) to 3.0 (M015). Significant differences for BE and quality were found between crop I and II. However, the results from two crops are not in conflict. It was found that BEs and qualities of crop II are overall higher than those of crop I. Total means of BE for crop I and II are 34.6% and 37.7%, respectively. Total means of quality for crop I and II are 1.7 and 1.5, respectively. WC828, M036, M037 and M040 had the significantly higher BEs and quality than the other lines tested in both crops (Figure 4.8).

Figure 4.8. Graphic summary of means of BEs (left) and quality (right) of two crops of Grifola frondosa (WC828) to determine the effect of seven genotypes (Experiment \#4). Treatments highlighted in red bold font showed significantly higher BEs or quality in both crops in the experiment. Quality was rated 1-4 with 1 being the highest quality while 4 was the lowest quality rating. Treatment descriptions are shown in Table 4.14 (Appendix F).

These was a 7\% difference in BE for WC828 between Experiment \#1 and \#4 for Crop II. When crop means for BEs were compared for WC828 between experiments, however, there was a difference of only 4%. Thus, overall yields
were similar from experiment to experiment. In summary, isolates WC828, M036, M037 and M040 had both consistently high BEs and quality in both crops, with no significant difference between isolates. Since WC828 is the commercial isolate used in the U.S., it was chosen to perform the nutrient experiments.

4.3.3 Effects of nutrient supplements on crop cycle time

Isolate WC828 performed differently on sawdust supplemented with different combinations of nutrients. The results are shown in Table 4.15 (Appendix F) and Figure 4.9. The crop cycle was the shortest (10 weeks) when combinations of 10% wheat bran plus 10% rye (treatment \#6) were used. This treatment also had the shortest spawn run (4 weeks). Combinations of wheat bran and rye appeared to allow shortest spawn run time and shortest crop cycle time. Formulations with only 20% wheat bran (treatment \#1) and only 20% rye (treatment \#3) had relatively short spawn run times (5.5 and 6 weeks, respectively). When only millet (Experiment \#2), corn meal (Experiment \#4) or the combination of millet and corn meal (Experiment \#9) were used, the crop cycle could not be completed due to arrested development and maturation of fruitbodies. However, the combinations of millet and corn meal with either wheat bran or rye resulted in a completed, but delayed crop cycle.

Figure 4.9. Graphic summary (15 treatments) of crop cycle time of Grifola frondosa (WC828) as influenced by selected nutrient supplements (total 20% of substrate) used alone or in various combinations (Experiment \#5). Treatment descriptions are shown in Table 4.15 (Appendix F).

4.3.4 Effects of nutrient supplements on quality and yield

Significant differences in BEs and quality were found among 15 treatments in crop I and crop II (Table 4.16) (Appendix F). In crop I, BEs ranged from 40.5% (treatment \#6) to zero (treatments \#2, 4 and 9). Quality ranged from 1.2 (treatment \#6) to 3.0 (treatment \#8). A combination of 10% wheat bran plus 10% rye (treatment \#6) added to substrate produced the highest BE and best quality. However, there was no significant difference in BE between treatments \#5, \#6 and \#11. Treatments with combinations of 10% millet plus 10% rye (treatment \#8), 6.7% wheat bran, 6.7% millet plus 6.7% corn meal (treatment \#12), and 6.7% millet, 6.7% rye plus 6.7% corn meal (treatment \#14), respectively, were significantly lower in BEs than all other nutrient combinations tested. In Crop II, BEs ranged from 40.1\% (treatment \#11) to zero (treatments \#2, 4 and 9). Quality ranged from 1.1 (treatment \#6) to 3.1 (treatment \#12). The combination of 6.7% wheat bran, 6.7% millet plus 6.7% rye (treatment \#11),
along with treatment \#3 \#5, \#6, and \#10 had the highest BEs with no significant difference. The highest quality mushrooms were produced by substrates from treatments \#3 \#5, \#6, \#11, and \#13.

No significant differences for BE and quality were found between crop I and II. The results based on combined data are summarized in Figure 4.10. The combination of 10% wheat bran plus 10% rye (treatment \#6), 10% wheat bran plus 10% millet (treatment \#5), and 6.7% wheat bran, 6.7% millet plus 6.7% rye (treatment \#11) had both the highest BEs and quality.

Comparison of all substrate formulations evaluated in this experiment revealed that for isolate WC828, wheat bran, rye and millet produced better fruiting and yields than corn meal. In general, combinations of more than one type of nutrient were better than only one nutrient. Combinations of two or three nutrients selected from wheat bran, rye or millet was the most desirable formulation with shortest crop cycle, best quality and highest BE .

Figure 4.10. Graphic summary (12 out of 15 total treatments) of means of BEs (left) and quality (right) of combined data of two crops of Grifola frondosa (WC828) to determine the effect of selected nutrient supplements (total 20\% of substrate) used alone or in various combinations (Experiment \#5). Treatments highlighted in red bold font showed significantly higher BEs or quality in both crops in the experiment. Quality was rated $1-4$ with 1 being the highest quality while 4 was the lowest quality rating. Treatment descriptions are shown in Table 4.16 (Appendix F).

4.3.5 Effects of different levels of selected nutrient supplements on crop cycle time

Different levels of wheat bran and millet significantly influenced mushroom crop cycle time. The results are shown in Table 4.17 (Appendix F) and summarized in Figure 4.11. There was no primordium formation for any levels of millet used alone. When the 10% nutrient supplement level was used, mycelial growth was weak and none of the treatments completed the crop cycle. Three treatments, that contained 10% wheat bran plus 10% millet (treatment \#3), 15% wheat bran plus 5% millet (treatment \#4) and 20% wheat bran (treatment \#5), completed the whole crop cycle. The shortest crop cycle (11 weeks) was observed when 20% wheat bran was used as supplement. At the 30% total supplement level, crop cycles for each treatment were shorter compared to the 20% level. The shortest crop cycle was 9 weeks observed for 30% wheat bran.

Figure 4.11. Graphic summary (5 treatments) of crop cycle time of Grifola frondosa (WC828) as influenced by 20\% (Experiment \#7) (top) and 30\% (Experiment \#8) (below) levels of wheat bran and millet used alone or in various combinations. Ratios shown below each treatment number indicate percentages of wheat bran : millet.

The results for different levels of wheat bran and rye are shown in Table 4.18 (Appendix F) and summarized in Figure 4.12. All treatments produced mushrooms, except those at the 10% total supplement level. At the 20% level, there was not much difference in crop cycle time for each treatment (Table 4.18A). Crop cycle time at the 30% level ranged from 8 weeks to 14 weeks, with the shortest crop cycle (8 weeks) comprising a combination of 22.5% wheat bran plus 7.5% rye (Table 4.18B). Primordia developed sooner at the 30% level than those at the 20% level. This indicated that higher levels of wheat bran and rye stimulated primordia formation and development. However, spawn run for treatment \#1 (rye only) was much longer at the 30% level (14 weeks) than at the 20% level (11 weeks).

Figure 4.12. Graphic summary (5 treatments) of crop cycle time of Grifola frondosa (WC828) as influenced by 20\% (Experiment \#10) (top) and 30\% (Experiment \#11) (below) levels of wheat bran and rye used alone or in various combinations. Ratios shown below each treatment number indicate percentages of wheat bran : rye.

Only the 20% and 30% levels of wheat bran, millet and rye and their mixtures were evaluated because the 10% level of nutrient was not sufficient for optimum mushroom growth. The results are shown in Table 4.19 (Appendix F) and summarized in Figure 4.13. All treatments resulted in completion of the crop cycle, except treatment \#4 (millet only) at both levels, treatment \#2, \#3 and \#7 at the 20% level. At 20% level, crop cycle time for treatment \#8 (wheat bran : millet : rye = 13.3\% : 0\% : 6.7\%) and treatment \#5 (wheat bran : millet : rye = 6.7\% : 0 : 13.3%) was the shortest (10 weeks). At the 30% level, 9 weeks was the shortest crop cycle achieved (treatment \#8 and \#10).

Figure 4.13. Graphic summary (10 treatments) of crop cycle time of Grifola frondosa (WC828) as influenced by 20\% (Experiment \#12) (top) and 30\% (Experiment \#13) (below) levels of wheat bran, millet and rye used alone or in various combinations. Ratios shown below each treatment number indicate percentages of wheat bran : millet : rye.

4.3.6 Effects of different levels of selected nutrient supplements on quality and yield

4.3.6.1 Wheat bran and millet

The BEs and quality data for the combinations of wheat bran and millet are shown in Table 4.20 (Appendix F) and summarized in Figure 4.14. At the 20\% level, BEs ranged from 30.3\% (treatment \#3) to zero (treatments \#1 and 2), and quality ranged from 1.6 (treatment \#3) to 1.9 (treatment \#4). No significant differences were found between treatments for BE and quality. At the 30% level, BEs ranged from 40.2\% (treatment \#3) to zero (treatment \#1), and quality ranged from 1.8 (treatment \#3) to 2.4 (treatment \#5). Treatment \#3 (15\% wheat bran and 15% millet) had the highest BE and quality. There were no significant differences in BE between treatments \#2 (7.5% wheat bran and 22.5% millet) and \#4 (22.5% wheat bran and 7.5% millet).

Figure 4.14. Graphic summary (5 treatments) of means of BEs (left) and quality (right) of Grifola frondosa (WC828) to determine 20% (Experiment \#7) and 30% (Experiment \#8) levels of wheat bran and millet used alone or in various combinations. Quality was rated 1-4 with 1 being the highest quality while 4 was the lowest quality rating. Ratios shown below each treatment number indicate percentages of wheat bran : millet.

4.3.6.2 Wheat bran and rye

When wheat bran and rye were used, no significant differences in quality were found at both the 20% and 30% total supplement level, while there were significant differences in BEs between treatments. The results are shown in Table 4.21 (Appendix F) and summarized in Figure 4.15. The BEs ranged from 41.5\% (treatment \#3) to 24.1\% (treatment \#5) at the 20\% level. Treatment \#2 (5% wheat bran and 15% rye), \#3 (10% wheat bran and 10% rye) and \#4 (15% wheat bran and 5% rye) had higher BEs and were significantly different ($\mathrm{P}=$ 0.05) than the other two treatments (\#1 and 5). Combinations of wheat bran plus rye at a $10 \%: 10 \%$ rate (treatment \#3) had the highest BE (41.5%) and the best quality (1.3). At the 30% level, BEs ranged from 45.6% (treatment \#3) to 22.3% (treatment \#5). Treatment 5 (30% wheat bran) had a significantly lower BE (22.3\%) and all the others were not significantly different. The highest BE was 45.6% achieved from substrate of treatment \#3 (15% wheat bran and 15% rye); this result is the same as that found for the 20% level. Comparison of the two levels indicated that, in general, higher nutrient levels increased yield, but lowered mushroom quality.

Figure 4.15. Graphic summary (5 treatments) of means of BEs (left) and quality (right) of Grifola frondosa (WC828) to determine 20\% (Experiment \#10) and 30\% (Experiment \#11) levels of wheat bran and rye used alone or in various combinations. Quality was rated 1-4 with 1 being the highest quality while 4 was the lowest quality rating. Ratios shown below each treatment number indicate percentages of wheat bran : rye.

4.3.6.3 Wheat bran, millet and rye at 20% level

The BEs and quality of two crops for the 20% level of combined wheat bran, millet and rye are shown in Table 4.22 (Appendix F) and summarized in Figure 4.16. In crop I, no significant differences in quality were found among the treatments. BEs ranged from 42% (treatment \#8) to zero (treatments \#2, 3, 4 and 7). Treatment \#8 (13.3\% wheat bran and 6.7\% rye), treatment \#6 (6.7\% each of wheat bran, millet and rye), treatment \#5 (6.7\%wheat bran and 13.3% rye) and treatment \#9 (13.3% wheat bran and 6.7% millet) had the highest BEs (42\%, 38.5\%, 36.1\% and 32.9\%, respectively).

A significant difference for BE was found between crops I and II. However, the results from two crops are not in conflict. Results for crop II were similar to crop I although the actual values of BE and quality were lower. Total means for BE for crop I and II were 33.9% and 31.2%, respectively. There was no significant difference in mushroom quality for any of the treatments in crop II. When wheat bran and rye were used, both combinations of $6.7 \%: 13.3 \%$ (treatment \#5) and 13.3\%:6.7\% (treatment \#8) produced high BEs. When wheat bran and millet were used, only the combination of 13.3\%:6.7\% (treatment \#9) produced high BEs. This suggests that a higher level of wheat bran may provide additional yield increases. The combination of wheat bran, millet and rye also was effective in stimulating mushroom yield.

Figure 4.16. Graphic summary (6 out of 10 total treatments) of means of BEs (top) and quality (below) of two crops of Grifola frondosa (WC828) to determine the effect of 20% wheat bran, millet and rye used alone or in various combinations (Experiment \#12). Treatments highlighted in red bold font showed significantly higher BEs or quality in both crops in the experiment. Quality was rated 1-4 with 1 being the highest quality while 4 was the lowest quality rating. Ratios shown below each treatment number indicate percentages of wheat bran: millet : rye.

4.3.6.4 Wheat bran, millet, and rye at the 30% level

The BEs and quality for two crops for the 30% level of wheat bran, millet and rye are shown in Table 4.23 (Appendix F) and summarized in Figure 4.17. Significant differences in BEs and quality were found in crops I and II. In crop I, BEs ranged from 48.9% (treatment \#6) to zero (treatment \#4), and quality ranged from 1.6 (treatment \#3) to 2.5 (treatment \#10). The BEs for treatment \#6 (10\% each of wheat bran, millet and rye) (48.9\%) and treatment \#5 (10\% wheat bran and 20% rye) (44.1%) were significantly higher than the other treatments. Treatment \#10 (30\% wheat bran only) resulted in lower mushroom quality. There was no significant difference in quality for the other treatments.

In crop II, BEs ranged from 45.2\% (treatment \#6) to zero (treatment \#4), and quality ranged from 1.4 (treatment \#3) to 2.3 (treatment \#10). Similar to crop I, a combination of 10% each of wheat bran, millet and rye (treatment \#6) and 10% wheat bran plus 20% rye (treatment \#5) had the highest BEs. In this crop, combinations of 20% wheat bran plus 10% rye (treatment \#8) and 20% wheat bran plus 10% millet (treatment \#9) also were significantly higher. Quality results for crop II were the same as crop I with treatment \#10 (30\% wheat bran only) significantly lower than the others. Significant differences for BE were found between crops I and II. However, the results from the two crops were not in conflict. The overall BEs for crop I were higher than those for crop II. Total means of BEs for crop I and II were 36.6% and 33.4%, respectively. There was no significant difference for quality between the two crops. Overall results for combined data were the same as those for each individual crop.

Comparison of the 20% and 30% levels of added nutrient showed that, in general, increasing the nutrient level increased yield although this was not always the case. For example, BE for treatments 7,8 and 10 were higher for the 20% level than for the 30% level. In addition, some treatments did not produce mushrooms at the 20% level of supplementation, while at the 30% level, relatively high yields were obtained (treatment \#2, 3 and 7). The BEs of treatment 6 (wheat bran : millet : rye = 10\%:10\%:10\%) and treatment \#5 (wheat bran : rye $=10 \%: 20 \%$) were significantly higher than the other treatments at the 30% and 20% levels, and thus, could be considered one of the best substrate formulas for WC828.

BE (\%)

Quality

Figure 4.17. Graphic summary (9 out of 10 total treatments) of means of BEs (top) and quality (below) of two crops of Grifola frondosa (WC828) to determine the effect of 30% of wheat bran, millet and rye used alone or in various combinations (Experiment \#13). Treatments highlighted in red bold font showed significantly higher BEs or quality in both crops in the experiment. Quality was rated 1-4 with 1 being the highest quality while 4 was the lowest quality rating. Ratios shown below each treatment number indicate percentage of wheat bran : millet : rye.

4.4 Discussion

Grifola frondosa (maitake) is a relatively new cultivated mushroom when compared with the 1400-year cultivation history for Auricularia auricula, 1000year history for Lentinula edodes, and 400-year history for Agaricus bisporus (Chang 1999). It is anticipated that consumer demand for maitake will increase substantially in the next few years (D.J. Royse, personal communication). However, knowledge currently is very limited as to how different genotypes perform under various conditions and how different nutrient types and levels influence the crop cycle, and mushroom yield and quality. Therefore, I sought to examine the effects of genotype and selected nutrient supplements on the
mushroom crop cycle, yield and quality were evaluated to provide additional information to growers on cultivation of this mushroom.

Significant differences in crop cycle performance, and mushroom yield and quality among lines was observed. I also found substantial genetic variability among the isolates examined. Among 23 isolates from the wild I tested, nine (39%) did not fruit under our conditions.

I evaluated 10 isolates of U.S origin for fruiting capacity and only one (10%) isolate (M015) produced mushrooms consistently. Of the 12 isolates of Asian origin, eight (67\%) isolates (WC836, WC828, WC835, M036, M037, M038, M039, and M040) produced mushroom consistently, while only four did not. The only European isolate available (WC493) did not fruit consistently in my tests and mushroom quality was good to excellent. While it may seem that Asian isolates have a higher proportion of strains that fruit relative to U.S. isolates, it should be pointed out that only one of the eight Asian isolates tested was a known wild isolate. At least four of the 12 isolates of Asian origin were/are used commercially. Therefore, fruiting capacities of wild isolates may be similar from continent to continent, but it is not possible to determine this with the available data.

Among the nine isolates of G. frondosa that produced mushrooms consistently, significant differences in BE and quality were observed. Isolates WC828, M036, M037 and M040 would appear to have the greatest potential for commercial production since they consistently produced the highest BEs and quality. Other isolates may be useful to breeders, however, because some of them had high BE (i.e. M039 and M015), with reasonable quality (i.e. WC836 and M038) and a short crop cycle (i.e. M039). Thus, genetic variability found in these isolates may be utilizable by breeders wishing to combine several desirable traits in a single line. Relatively little effort has been directed to breeding and selection
of lines for commercial cultivation in this species due to the short history of cultivation. My work should assist these efforts by providing initial data on fruiting capacity on various nutrient supplemented substrates and initial selection of strains for use in the breeding program. In addition, I have assembled an extensive collection of lines that is available to commercial companies that may want to pursue genetic improvement of lines. I should point out that isolates from Europe are under-represented in this collection and additional efforts should be directed toward increasing availability of lines from this area of the world. It might also be worthwhile to increase efforts to obtain representatives from South American and perhaps, New Zealand to determine if additional genetic variability would be available from these areas.

The results of my experiments clearly indicate that type and quality of nutrient supplements influence crop cycle and mushroom yield and quality. Combinations of two or three nutrients selected from wheat bran, rye or millet are the most desirable formulations found to date.

Nutrient levels of 10% proved too low for optimum growth and development of basidiomes. In fact, no mushrooms were produced when total nutrient levels were this low regardless of nutrient combination. Wheat bran is one of the most important factors for reducing crop cycle time. Formulations with only rye produced mushrooms, but were significantly lower in BEs than formulations with combinations of wheat bran and rye. Comparison of the supplement levels of 20% and 30% showed that as the nutrient levels increased, BEs in most cases, increased as well. The combination of 10% wheat bran, 10% millet and 10% rye and the combination of 10% wheat bran plus 20% rye were the best overall formulations for isolate WC828.

I found that better quality mushrooms and more consistent yields were produced from a more nutritionally balanced substrate. For example, higher
levels of wheat bran significantly shortened the crop cycle, but produced poorer quality mushrooms and lowered BEs. On the other hand, increasing wheat bran levels in sawdust substrates containing millet and rye or both, increased productivity and, often times, improved mushroom quality. The use of millet in substrate is another good example of poor yield and quality when millet is used alone. However, when it was used together with wheat bran and rye, significantly higher BEs and quality were achieved. Additional work evaluating the effects of other types and quantities of nutrients on mushroom BE and quality may reveal more productive combinations than I found in this study. I also would suggest that additional nutritional investigations be completed with two or more strains of diverse genetic origin. This would help minimize the potential independent effect of germplasm on crop cycle time and mushroom yield and quality.

Chapter 5: General Conclusions

DNA sequences of internal transcribed spacers 1 and 2 (ITS-1 and 2) and 5.8 S regions of the nuclear ribosomal DNA transcriptional unit and the partial β tubulin gene were obtained to compare nucleotide variation within 51 isolates of Grifola frondosa and its allies (G. sordulenta, Polyporus umbellatus and Meripilus giganteus). For rDNA and partial β-tubulin gene sequences, interspecies nucleotide variation for Grifola frondosa (5.4\% for rDNA and 12.2\% for β-tubulin) was relatively small compared to intraspecies variation (G. frondosa and G. sordulenta; 14.3% for rDNA and 30.2% for β-tubulin). Among isolates of Grifola frondosa and its allies, the nucleotide variation was much higher and unambiguous sequence alignments were not achievable. Most of the variation observed was attributable to nucleotide differences within ITS-1 and ITS-2 regions of rDNA and introns of β-tubulin gene sequences. I found that isolate WC484 from ATCC (American Type Culture Collection) is a misidentified isolate with a 98% match of rDNA (ITS-1, ITS-2 and 5.8 s) sequences to Spongipellis detectans).

Molecular phylogenetic analyses of rDNA, β-tubulin and combined analyses revealed two major clades within Grifola frondosa by both neighbor joining (NJ) and maximum parsimony (MP) analyses. Clade I (U.S. clade) included all the U.S. isolates, while Clade II (Asian clade) consisted only of Asian isolates. The strong bootstrap support in β-tubulin and combined datasets suggested that the U.S. clade and the Asian clade are distinct groups that are evolving independently.

The single European isolate (WC493) shared a common ancestor with Asian isolates (with significant bootstrap support) based on combined and partial
β-tubulin gene sequence data in both NJ and MP analyses. However, ITS rDNA sequence data indicated that WC493 has a closer relationship with U.S. isolates (NJ analysis) or is the most recent ancestor of U.S. and Asian isolates in MP analysis. These groupings were not strongly supported by bootstrap analysis, however. Based on partial β-tubulin gene sequence and morphological data, G. frondosa and its allies (G. sordulenta and P. umbellatus) are independent lineages and also share a common ancestor. However, this was not fully resolved by ITS and β-tubulin sequence data.

In this study, genetic variation and phylogenetic information inferred from molecular data were of benefit in the attempts to select improved commercial lines of maitake. The phylogenetic analyses revealed that the major line WC828 (unknown origin) used commercially on most mushroom farms is of Asian decent. Furthermore, 23 isolates were selected based on their genetic diversity and then evaluated for the effects of genotypes on crop cycle time and biological efficiency (BE) and mushroom quality. Significant differences among lines were found for these parameters when mushrooms were produced on a nutrient supplemented sawdust substrate. Among 23 isolates tested, nine did not fruit. Among nine isolates that produced mushrooms consistently, significant differences in BEs and quality were found. Isolates WC828, M036, M037 and M040 were the most consistent with highest BEs (38.5\%, 39.5\%, 35.8\% and 38.9%, respectively) and quality (1.2, 1.3, 1.4 and 1.2, respectively) than the other isolates with a shorter crop cycle (10, 9, 10 and 12 weeks, respectively).

In order to determine the effects of nutrient supplements on crop cycle time, BE and mushroom quality, experiments were conducted using various combinations of wheat bran, rye, millet and corn meal at 20% total supplement level. Statistical analyses indicated that different types of nutrient supplements have significant effects on crop cycle time and mushroom yield and quality. Combinations of two or three nutrients selected from wheat bran, millet and rye
were the most desirable formulation with short crop cycle, high quality and high BE.

Different crop cycle times and significant differences for BEs and quality were found for various combinations of wheat bran, rye and millet at $10 \%, 20 \%$ and 30% total supplement levels. A total nutrient supplement level of 10% was insufficient for mushroom production. Wheat bran was necessary for a consistent, relatively short crop cycle. Increased nutrient levels were positively correlated with increased BE. The combinations of 10% wheat bran, 10% millet and 10% rye (BE 47.1%, quality 1.8 and crop cycle 12 weeks) and 10% wheat bran plus 20% rye (BE 44%, quality 1.7 and crop cycle 10 weeks) were rated as the best formulations for isolate WC828 under our environmental conditions.

In conclusion, I believe this work has led to improved commercial production potential for maitake. Some of my best lines and formulas are already being used by commercial maitake growers in the United States. I expect my work will be adopted by other commercial growers worldwide.

Appendix A: Sequence alignment of ITS-1, 5.8 S, and ITS-2 rDNA sequences from isolates of Grifola frondosa and G.

sordulenta

Sequence alignments were performed using the Clustal W algorithm (Higgins et al. 1991) in the MegAlign application of the Wisconsin Package (Genetics Computer Group, Madison, WI). Numbers at the top of each sequence block designate site location within the sequence alignment. The 5.8 S region is labeled and underlined for the first isolate (M001).

[

M001
M002
M003
M004
M005
M006
M007
M008
M009
M010
M011
M012
M013
M014
M015
M016
M017
M018
M019
M020
M021
M029
M030
M031
M032
M033
M034
M035
M036
M037
M038
M039
M040
WC248
WC364
WC367
WC483
WC493
WC555
WC556
WC557
WC581
WC582
WC583

AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTACAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATTCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATTCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATTCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTACAGAAATGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAATGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAATGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAATGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAATGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGANAAGGGTTGTCGCTGGCCTCAAAATTCGGGGCATGTGCACACCCTGCTCATC AGTACAGAAAAGGGTTGTCGCTGGCCTCAAAATTCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAATGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAATGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC

WC659
WC685
WC808
WC828
WC834
WC835
WC836
G_sordulenta_G01
[
M001
M002
M003
M00 4
M005
M006
M007
M008
M009
M010
M011
M012
M013
M014
M015
M016
M017
M018
M019
M020
M021
M029
M030
M031
M032
M033
M034
M035
M036
M037
M038
M039
M040
WC248
WC364
WC367
WC483
WC493
WC555
WC556
WC557
WC581
WC582
WC583
WC659
WC685
WC808
WC828
WC834
WC835
WC836
G_sordulenta_G01
[
M001
M002
M003
M00 4

AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AgTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGGGCATGTGCACACCCTGCTCATC AGTTCTGAAACGGGTTGTAGCTGGCCTTA-----CGAGGCATGTGCACGCCCTGCTCATC

CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG САСТСTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG САСTСTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCGGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCNGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCGGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCGGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCGGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCGGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG САСTСTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCNGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG САСTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCGGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCGGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG САСТСTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG САСТСTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCTCACACCTGTGCACTTTCTGTAGGTCGGTTCGGGATCTGGTCCCTCGCGGGGTCG CACTCT-ACACCTGTGCACCATCTGTAGGTCGGTTTGGGTTCGGATGCTTCGCGGCGTTC

GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT

M005	GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M006	GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M007	GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M008	GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M009	GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M010	GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M011	GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M012	GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M013	GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M014	GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M015	GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M016	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M017	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M018	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M019	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATCGCGAT
M020	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M021	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M029	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M030	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M031	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M032	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M033	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M034	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M035	GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M036	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M037	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M038	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M039	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
M040	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
WC248	GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
WC364	GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
WC367	GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
WC483	GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
WC493	GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
WC555	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
WC556	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
WC557	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
WC581	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
WC582	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
WC583	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
WC659	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
WC685	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
WC808	GGTTCTGTGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
WC828	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
WC834	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
WC835	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
WC836	GGTTCTGCGCCTTCCTATGTACAATCACAAACGCTTCAGTATTCAGAATGTCATTGCGAT
G_sordulenta_G01	GGGCTCGGGCCTTCCTATGTACT-TCACACACGCTTTAGTAT-CAGAATGTAATTGCGA-
[181 5.8S \rightarrow 240]
M001	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M002	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M003	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M004	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M005	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M006	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M007	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M008	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M009	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M010	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M011	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M012	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M013	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M014	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M015	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M016	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M017	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M018	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA

M019	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M020	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M021	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M029	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M030	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M031	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M032	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M033	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M034	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M035	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M036	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M037	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M038	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M039	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
M040	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
WC248	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
WC364	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
WC367	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
WC483	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
WC493	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
WC555	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
WC556	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
WC557	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
WC581	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
WC582	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
WC583	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
WC659	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
WC685	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
WC808	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
WC828	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
WC834	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
WC835	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
WC836	AATTAAAACGCATCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
G_sordulenta_G01	--TAAAACGCACCTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAA
[241 300]
M001	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M002	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M003	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M004	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M005	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M006	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M007	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M008	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M009	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M010	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M011	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M012	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M013	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M014	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M015	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M016	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M017	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M018	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M019	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M020	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M021	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M029	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M030	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M031	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M032	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M033	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M034	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M035	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M036	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M037	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M038	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
M039	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT

M040	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
WC248	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
WC364	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
WC367	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
WC483	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
WC493	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
WC555	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
WC556	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
WC557	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
WC581	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
WC582	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
WC583	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
WC659	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
WC685	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
WC808	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
WC828	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
WC834	GAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
WC835	TGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT
WC836	TGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGGAGTGTCATGGAAAT
G_s0rdulen	

WC808	TGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATGGAAT
WC828	TGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATGGAAT
WC834	TGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATGGAAT
WC835	TGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATGGAAT
WC836	TGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATGGAAT
G_sordulenta_G01	TGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATGGAAT
[
M001	TCTCAACCCACACGTCCTTGTGATGTGGACGGGCTTGGATATTGGAGGTTTCTGCCGGCC

M007	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M008	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M009	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M010	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M011	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M012	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M013	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M014	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M015	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M016	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M017	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M018	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M019	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M020	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M021	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M029	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M030	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M031	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M032	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M033	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M034	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M035	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M036	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M037	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M038	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M039	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
M040	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
WC248	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
WC364	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
WC367	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
WC483	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
WC493	CCC-ATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
WC555	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
WC556	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
WC557	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
WC581	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
WC582	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
WC583	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
WC659	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
WC685	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
WC808	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
WC828	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
WC834	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
WC835	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
WC836	CCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCCATCCCTTGCGGATCGGCTCTCG
G_sordulenta_G01	CTC-GTC--GGTCGGCTCCTCTTGAATGCATTAGCTCGATTCCTTGCGGATCGGCTCCCG
	481 540]
M001	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC
M002	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC
M003	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC
M004	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC
M005	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC
M006	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC
M007	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC
M008	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC
m009	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC
M010	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC
M011	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC
M012	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC
M013	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC
M014	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC
M015	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC
M016	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATAGTC
M017	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATAGTC
M018	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATAGTC
M019	GTGTGATAATTGTCTACGCCGCGGTCGTTGAAGCCTCGGTCGGGAGAGCTTATAATCGTC
M020	GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC

M021
M029
M030
M031
M032
M033
M034
M035
M036
M037
M038
M039
M040
WC2 48
WC364
WC367
WC483
WC493
WC555
WC556
WC557
WC581
WC582
WC583
WC659
WC685
WC808
WC828
WC834
WC835
WC836
G_sordulenta_G01
[
M001
M002
M003
M004
M005
M006
M007
M008
M009
M010
M011
M012
M013
M014
M015
M016
M017
M018
M019
M020
M021
M029
M030
M031
M032
M033
M034
M035
M036
M037
M038
M039
M0 40
WC248
GTGTGATAATTGTCTACGCCGCGGTCGTTGAAGCCTCAGTCGGGAGAGCTCATAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCGAGCTTATAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGCGGTCGTTGAAGCCTCAGTTGGGAGAGCT-ATAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTCGGGCNAGCTTATAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGGTCGTTGAAGCCTCAGTTGGGCGAGCTCACAATCGTC GTGTGATAATTGTCTACGCCGTGACCGT-GAAGC----GTTTGGCGAGCTTCGAACCGTC
$541574]$
CCCTCCGGGACAATCGAATATGACATCTGACCTC CCCTACGGGACAATTCAATCTGACATCTGACCTC CCCTCCGGGACAATTCAATCTGACATCTGACCTC CCCCACGGGACAATTCAATCTGACATCTGACCTC CCTTC-GGGACAATCGAATATGACATCTGACCTC CCCTCCGGGACAATTCAATCTGACATCTGACCTC CCTTC-GGGACAATCGAATATTACATCTGACCTC CCCTCCGGGACAATTCAATCTGACATCTGACCTC CCCTCCGGGACAATTCAATCTGACATCTGACCTC CCCTCCGGGACAATTCAATCTGACATCTGACCTC CCCTCCGGGACAATTCAATCTGACATCTGACCTC CCCTCCGGGACAATTCAATCTGACATCTGACCTC CCCTCCGGGACAATTCAATCTGACATCTGACCTC CCCTCCGGGACAATCGAATATGACATCTGACCTC CCCTCCGGGACAATTCAATCTGACATCTGACCTC CCCTCCGGGACAATTCAATCTGACATCTGACCTC CCCTCCGGGACAATTCAATCTGACATCTGACCTC CCCTCCGGGACAATTCAATCTGACATCTGACCTC CCCTCCGGGACAATTCAATCTGACATCTGACCTC CCCTCCGGGACAATCGAATATGACATCTGACCTC

WC364	CCCTCCGGGACAATCGAATATGACATCTGACCTC
WC367	CCCTCCGGGACAATCGAATATGACATCTGACCTC
WC483	CCCTCCGGGACAATCGAATA-GACATCTGACCTC
WC493	CCCTCCGGGACAATCGAATATGACATCTGACCTC
WC555	CCCTCCGGGACAATTCAATATGACATCTGACCTC
WC556	CCCCACGGGACAAT-GAATTTGACATCTGACCTC
WC557	CCCCACGGGACAATTCAATATGACATCTGACCTC
WC581	CCCTCCGGGACAATTCAATCTGACATCTGACCTC
WC582	CCCTCCGGGACAATTCAATCTGACATCTGACCTC
WC583	CCCTCCGGGACAATTCAATCTGACATCTGACCTC
WC659	CCCTCCGGGACAATTCAATATGACATCTGACCTC
WC685	CCCTCCGGGACAATCGAATATGACATCTGACCTC
WC808	CCCTCCGGGACAATTCAATCTGACATCTGACCTC
WC828	CCCTCCGGGACAATTCAATCTGACATCTGACCTC
WC834	CCCTCCGGGACAATTCAATCTGACATCTGACCTC
WC835	CCCTCCGGGACAATTCAATCTGACATCTGACCTC
WC836	CTATGGACAAACTTATATCTTGACATCTGACCTC

Appendix B: Sequence alignment of ITS-1, 5.8 S, and ITS-2 from isolates of Grifola frondosa and related species

Sequence alignments were performed using the Clustal W algorithm (Higgins et al. 1991) in the MegAlign application of the Wisconsin Package (Genetics Computer Group, Madison, WI). Numbers located at the top of each sequence block designate site location within the alignment. The 5.8 S region is labeled and underlined for the first isolate (M001). Divergent regions that could not be aligned ambiguously across all isolates are indicated with asterisks.

1	**
M004	AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGG--GCATGTGCACACCCTGCTCA
M009	AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGG--GCATGTGCACACCCTGCTCA
M030	AGTACAGAAATGGGTTGTCGCTGGCCTCAAAATCCGGG--GCATGTGCACACCCTGCTCA
M037	AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGG--GCATGTGCACACCCTGCTCA
WC493	AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGG--GCATGTGCACACCCTGCTCA
WC659	AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGG--GCATGTGCACACCCTGCTCA
WC828	AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGG--GCATGTGCACACCCTGCTCA
WC835	AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGG--GCATGTGCACACCCTGCTCA
G_sordulenta_G01	AGTTCTGAAACGGGTTGTAGCTGGCCTTA-----CGAG--GCATGTGCACGCCCTGCTCA
P_umbellatus_G02	AATTCTGACAAGGGTTGTTGCTGGCTGTTTCGTTTGAGCGGCATGTGCACGCCCTGATCA
M_giganteus_G06	ACTCCCAACTTGGGT-GAGGTTG-TTGCTGGCCCTGAGGGGCATGTGCACGTCTCGCTCA

M004 AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGG--GCATGTGCACACCCTGCTCA AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGG--GCATGTGCACACCCTGCTCA AGTACAGAAATGGGTTGTCGCTGGCCTCAAAATCCGGG--GCATGTGCACACCCTGCTCA AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGG--GCATGTGCACACCCTGCTCA AGTTCAGAAAAGGGTTGTAGCTGGCCTCAAA-TCCGGG--GCATGTGCACACCCTGCTCA AGTTCAGAAAAGGGTTGTCGCTGGCCTCAAAATCCGGG--GCATGTGCACACCCTGCTCA俗 AGTTCTGAAACGGGTTGTAGCTGGCCTTA-----CGAG--GCATGTGCACGCCCTGCTCA AATTCTGACAAGGGTTGITGCTGGCTGTTTCGITTGAGCGGCATGTGCACGCCCTGATCA _giganteus_G06

[
61
T---CCA-CTCTCACACCTGTGCACTTTCTGTAGGTCGG--TTCG---GGATCTGGTCCC
T---CCA-CTCTCACACCTGTGCACTTTCTGTAGGTCGG--TTCG---GGATCTGGTCCC
T---CCA-CTCTCACACCTGTGCACTTTCTGTAGGTCGG--TTCG---GGATCGGGTCCC
T---CCA-CTCTCACACCTGTGCACTTTCTGTAGGTCGG--TTCG---GGATCTGGTCCC T---CCA-CTCTCACACCTGTGCACTTTCTGTAGGTCGG--TTCG---GGATCTGGTCCC T---CCA-CTCTCACACCTGTGCACTTTCTGTAGGTCGG--TTCG---GGATCTGGTCCC T---CCA-CTCTCACACCTGTGCACTTTCTGTAGGTCGG--TTCG---GGATCTGGTCCC T---CCA-CTCTCACACCTGTGCACTTTCTGTAGGTCGG--TTCG---GGATCTGGTCCC T---CCA-CTCT-ACACCTGTGCACCATCTGTAGGTCGG--TTTG---GGTTCGGATGCT TTATCCATCTCACACACCTGTGCACATACTGTAGGTCGGCTTTTGATTGGAGTGGGGTCT TTTTATCTCTCACACCCCTGTGCACCTTTCATGGGATGGCTTGCGGCCGTCCGTCGGCCT

M00 4
M009
M030
M037
WC493
WC659
WC828
WC835
G_sordulenta_G01
P_umbellatus_G02
M_giganteus_G06
[
M004
M009
M030
M037
WC493
WC659
WC828
WC835
G_sordulenta_G01
P_umbellatus_G02
M_giganteus_G06
[
M004
M009
M030
M037
WC493
WC659
121

TCGCGGGGTCGGGTTCT-------GTGCCTTCCTATGTACAATCACAAAC-GCTTCAGTA-TCGCGGGGTCGGGTTCT------GTGCCTTCCTATGTACAATCACAAAC-GCTTCAGTA-TCGCGGGGTCGGGTTCT------GCGCCTTCCTATGTACAATCACAAAC-GCTTCAGTA-TCGCGGGGTCGGGTTCT------GCGCCTTCCTATGTACAATCACAAAC-GCTTCAGTA-TCGCGGGGTCGGGTTCT------GTGCCTTCCTATGTACAATCACAAAC-GCTTCAGTA-TCGCGGGGTCGGGTTCT-------GCGCCTTCCTATGTACAATCACAAAC-GCTTCAGTA-TCGCGGGGTCGGGTTCT------GCGCCTTCCTATGTACAATCACAAAC-GCTTCAGTA-TCGCGGGGTCGGGTTCT------GCGCCTTCCTATGTACAATCACAAAC-GCTTCAGTA-TCGCGGCGTTCGGGCTC-------GGGCCTTCCTATGTACT-TCACACAC-GCTTTAGTA-TCATCGACTCTGCTTTTTAGTTGGGGCCTTCCTATGTTTTATCACACACTACTTCAGTT-TTGCGTCGATGGCTCTGCAGCTG------CCTCGTGTTT--TTACAAACCTTTTAATCAG

120]

\qquad
\qquad

$\left.\begin{array}{lll}\text { WC828 } & \text { TTCAGAATGTC-ATTGCGATAATTAAAACGCATCTTA-TACAACTTTCAGCAACGGATCT } \\ \text { WC835 } & \text { TTCAGAATGTC-ATTGCGATAATTAAAACGCATCTTA-TACAACTTTCAGCAACGGATCT } \\ \text { G_sordulenta_G01 } & \text { T-CAGAATGTA-ATTGCGA----TAAAACGCACCTTA-TACAACTTTCAGCAACGGATCT } \\ \text { P_umbellatus_G02 } & \text { AAAAGAATGTC-CTCTTG-CGTCTAA--CGCATTTAAATACAACTTTCAGCAACGGATCT } \\ \text { M_giganteus_G06 } & \text { TCTTGAATGTTTATCGCGCGCATGCGCATTTAAATCAATACAACTTTCAGCAACGGATCT } \\ \text { [} & & \\ \text { M004 } & 241 & \\ \text { M009 } & \text { CTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAA } \\ \text { M030 } & \text { CTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAA } \\ \text { M037 } & \text { CTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAA } \\ \text { WC493 } & \text { CTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAA } \\ \text { WC659 } & \text { CTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAA } \\ \text { WC828 } & \text { CTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAA } \\ \text { WC835 } & \text { CTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAA } \\ \text { G_sordulenta_G01 } & \text { CTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAA } \\ \text { P_umbellatus_G02 } & \text { CTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAA } \\ \text { M_giganteus_G06 } & \text { CTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAA } \\ & & \\ \text { [} & & \\ \text { M004 } & & \text { TTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATG } \\ \text { M009 } & & \text { TTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATG }\end{array}\right]$

361	$\leftarrow 5.8 \mathrm{~S}$ - ************************************ 420]
M004	CCTGTTTGAGTGTCATGGAATTCTCAACCC-ACACGTCCTTGTGATGTGGACGGGCTTGG
M009	CCTGTTTGAGTGTCATGGAATTCTCAACCC-ACACGTCCTTGTGATGTGGACGGGCTTGG
M030	CCTGTTTGAGTGTCATGGAATTCTCAACCC-ACACGTCCTTGTGATGTGGACGGGCTTGG
M037	CCTGTTTGAGTGTCATGGAATTCTCAACCC-ACACGTCCTTGTGATGTGGACGGGCTTGG
WC493	CCTGTTTGAGTGTCATGGAATTCTCAACCC-ACACATCCTTGTGATGTGGACGGGCTTGG
WC659	CCTGTTTGAGTGTCATGGAATTCTCAACCC-ACACGTCCTTGTGATGTGGACGGGCTTGG
WC828	CCTGTTTGAGTGTCATGGAATTCTCAACCC-ACACATCCTTGTGATGTGGACGGGCTTGG
WC835	CCTGTTTGAGTGTCATGGAATTCTCAACCC-ACACATCCTTGTGATGTGGACGGGCTTGG
G_sordulenta_G01	CCTGTTTGAGTGTCATGGAATCATCAACCC-ATATGTCCTTGTGTCG--GATGGGCTTGG
P_umbellatus_G02	CCTGTTTGAGTGTCATGGAATTCTCAACTCTATTTGCCTTTGTGA-ATAGA---GCTTGG
M_giganteus_G06	CCTGTTTGAGTGTCATGGTATTCTCAATTC-GCTC-TCATTTTATTGAGGGCGGCATTGG
42	***************** 480]
M00 4	ACTTTGGAGGTTTCTGCCGGCCCCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCC
M009	ATATTGGAGGTTTCTGCCGGCCCCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCC
M030	ACTTTGGAGGTTTCTGCCGGCCCCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCC
M037	ACTTTGGAGGTTTCTGCCGGCCCCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCC
WC493	ACTTTGGAGGCTCATGCCGGTCCCC-ATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCC
WC659	ACTTTGGAGGTTTCTGCCGGCCCCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCC
WC828	ACTTTGGAGGTTTCTGCCGGCCCCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCC
WC835	ACTTTGGAGGTTTCTGCCGGCCCCCCATTCGGGTCGGCTCCTCTGGAATGCATTAGCTCC
G_sordulenta_G01	A-TTTGGAGGCTTATGCCGGCCCTC-GTC--GGTCGGCTCCTCTTGAATGCATTAGCTCG
P_umbellatus_G02	ACTTGGAGGTTTATTGCCGGTACCT-GT---GATCGGCTCCTCTTGAATGCATTAGCTCG
M_giganteus_G06	ATGTGGAGGCTCTTTGCTGGCCAT---TTTGTGCCAGCTCCTCTTAAAAATATTAGTGTG

A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC $\begin{array}{ll}\text { M004 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M009 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M030 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M037 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC493 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC659 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC828 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC835 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { G sordulenta G01 } & \text { A-TTCCTTGCGGATCGGCTC-CCGGTGTGATAAT-TGTCTACGCCGTGACCGT-GAAGC- }\end{array}$ $\begin{array}{ll}\text { M004 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M009 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M030 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M037 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC493 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC659 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC828 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC835 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { G sordulenta G01 } & \text { A-TTCCTTGCGGATCGGCTC-CCGGTGTGATAAT-TGTCTACGCCGTGACCGT-GAAGC- }\end{array}$ $\begin{array}{ll}\text { M004 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M009 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M030 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M037 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC493 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC659 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC828 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC835 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { G sordulenta G01 } & \text { A-TTCCTTGCGGATCGGCTC-CCGGTGTGATAAT-TGTCTACGCCGTGACCGT-GAAGC- }\end{array}$ $\begin{array}{ll}\text { M004 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M009 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M030 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M037 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC493 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC659 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC828 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC835 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { G sordulenta G01 } & \text { A-TTCCTTGCGGATCGGCTC-CCGGTGTGATAAT-TGTCTACGCCGTGACCGT-GAAGC- }\end{array}$ $\begin{array}{ll}\text { M004 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M009 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M030 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M037 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC493 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC659 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC828 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC835 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { G sordulenta G01 } & \text { A-TTCCTTGCGGATCGGCTC-CCGGTGTGATAAT-TGTCTACGCCGTGACCGT-GAAGC- }\end{array}$ $\begin{array}{ll}\text { M004 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M009 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M030 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M037 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC493 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC659 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC828 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC835 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { G sordulenta G01 } & \text { A-TTCCTTGCGGATCGGCTC-CCGGTGTGATAAT-TGTCTACGCCGTGACCGT-GAAGC- }\end{array}$ $\begin{array}{ll}\text { M004 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M009 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M030 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { M037 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC493 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC659 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC828 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { WC835 } & \text { A-TCCCTTGCGGATCGGCTC-TCGGTGTGATAAT-TGTCTACGCCGTGGTCGTTGAAGCC } \\ \text { G sordulenta G01 } & \text { A-TTCCTTGCGGATCGGCTC-CCGGTGTGATAAT-TGTCTACGCCGTGACCGT-GAAGC- }\end{array}$ G_sordulenta_G01 A-TTCCTTGCGGATCGGCTC-CCGGTGTGATAAT-TGTCTACGCCGTGACCGT-GAAGC-

```
P_umbellatus_G02 AACCTTTTGTGGATCAGCTTATCGGTGTGATAAAATGTCTACGCCGTTACTGT-GAAGCA
M_giganteus_G06 AATGCTCACTTCAT--GCTCA---GTGTGATAATTATCTTGCATTGTGCTTG--GGTGTG
[ 541 ********************************************************}600
M004 TCAGTCGGGCGAGCTTATAATCGTCCCCTCCGGGACAATCGAATATGACA-TCTGACCTC
M009 TCAGTCGGGCGAGCTTATAATCGTCCCCTCCGGGACAATCGAATATGACA-TCTGACCTC
M030 TCAGTTGGGCGAGCTCACAATCGTCCCCTCCGGGACAATTCAATCTGACA-TCTGACCTC
M037 TCAGTTGGGCGAGCTCACAATCGTCCCCTCCGGGACAATTCAATCTGACA-TCTGACCTC
WC493 TCAGTCGGGCGAGCTTATAATCGTCCCCTCCGGGACAATCGAATATGACA-TCTGACCTC
WC659 TCAGTTGGGCGAGCTCACAATCGTCCCCTCCGGGACAATTCAATCTGACA-TCTGACCTC
WC828 TCAGTTGGGCGAGCTCACAATCGTCCCCTCCGGGACAATTCAATCTGACA-TCTGACCTC
WC835 TCAGTTGGGCGAGCTCACAATCGTCCCCTCCGGGACAATTCAATCTGACA-TCTGACCTC
G_sordulenta_G01 ---GTTTGGCGAGCTTCGAACCGTCCTATGGACAAACTTATATCTTGACA-TCTGACCTC
P_umbellatus_G02 T--ATTATTCG-GCTTCCAATCGTCCTTCACGGGACAATA-ACTTTGACC-TTTGACCTC
M_giganteus_G06 GCGACT--TCATGCTTCTAATCGTC----GCAAGACAACC---TTTGACAATCTGACCTC
```


Appendix C: Blast search result for isolate WC484

```
>emb AJ006670.1 SDE6670 Spongipellis delectans 5.8S rRNA gene and
internal transcribed
spacers 1 and 2, (ITS1 & ITS2), Sample 26, Length = 650
    Score = 1088 bits (549), Expect = 0.0
    Identities = 567/573 (98%)
    Strand = Plus / Plus
WC484: 1 aatttatgacaaggttgtcgctggccctaattgggcatgtgcacgcoctgctcattctcc 60
S. delectans: 59 aatttatgacaaggttgtcgctggctctaattgggcatgtgcacgccttgctcattctcc 118
WC484: 61 aattcttacacctctgtgcacttttcataggttggttgtggctgtcttcgcggatggttc 120
    ||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||
S. delectans: 119 aattcttacacctctgtgcacttttcataggttggttgtggctgtcttcgcggacggttc 178
WC484: 121 agcctgcctatgcttttacaaacgcttcagttatagaatgtatctcgcgtataacgcatt 180
    |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
S. delectans: 179 agcctgcctatgcttttacaaacgcttcagttatagaatgtatctcgcgtataacgcatt 238
WC484: 181 atatacaactttcagcaacggatctcttggctctcgcatcgatgaagaacgcagcgaaat 240
    |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
S. delectans: 239 atatacaactttcagcaacggatctcttggctctcgcatcgatgaagaacgcagcgaaat 298
WC484: 241 gcgataagtaatgtgaattgcagaattcagtgaatcatcgaatctttgaacgcaccttgc 300
    |||||||||||||||||||||||||||||||||||||||||||||
S. delectans: 299 gcgataagtaatgtgaattgcagaattcagtgaatcatcgaatctttgaacgcaccttgc 358
WC484: 301 gccctttggtattccgaagggcatgcctgtttgagtgtcatggtattctcaatactccaa 360
    ||||||||||||||||||||||||||||||||||||||||||||||||||
S. delectans: 359 gccctttggtattccgaagggcatgcctgtttgagtgtcatggtattctcaataccccaa 418
WC484: 361 gtctttgcggataagggtgtattggatttggaggtttatgctggcgtttgtcggctcctc 420
    |||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||
S. delectans: 419 gtctttgcggatgagggtgtattggatttggaggtttatgctggcgtttgtcggctcctc 478
WC484: 421 ttaaatgcattagcaaagatgttactgctactcttcagcgtgataattgtctacgctgct 480
    |||||||||||||||||||||||||||||||||||||||||||||||||||||
S. delectans: 479 ttaaatgcattagcaaagatgttactgctactcttcagcgtgataattgtctacgctgcc 538
WC484: 481 gttgtacggtataaataagtctttgcttctaatcgtcttcggacaatttcttgacatctg 540
    ||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||
S. delectans: 539 gttgtacggtataaataagtctctgcttctaatcgtcttcggacaatttcttgacatctg 598
WC484: 541 acctcaaatcaggtaggactacccgctgaactt 573
    |||||||||||||||||||||||||||||||
S. delectans: 599 acctcaaatcaggtaggactacccgctgaactt 631
```


Appendix D: Sequence alignment of partial $\boldsymbol{\beta}$-tubulin gene sequences from isolates of Grifola frondosa and G. sordulenta

Sequence Alignments were performed using the Clustal W algorithm (Higgins et al. 1991) in the MegAlign application of the Wisconsin Package (Genetics Computer Group, Madison, WI). Numbers located at the top of each sequence block designate site location within the alignment. Regions of introns are labeled and underlined for the first isolate (M001). Codons are shown in protein coding regions.

Intron $5 \rightarrow \quad \leftarrow$ Intron 5 65]

M001 C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC
M002 C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATT--TGACGACCGTTGATCGT-AG CCC M003 C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC M004 C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC M005 C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC M006 C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC M007 C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC M008 C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC M009 C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC M010 C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC M011 C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC M012 C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC M013 C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC M014 M015 M016
M017
M018
M019
M020
M021
M029
M030
M031 M032 M033 M034 M035 M036 M037 M038 M039

C GAG GTCTGCG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC C GAG GTCTGTG-CATTTCACATGTCACGTTGGATAAAATC--TGATGACCGTTGATCGT-AG CCC C GAG GTCTGTG-CATTTCACATGTCACGTTGGATAAAATC--TGATGACCGTTGATCAT-AG CCC C GAG GTCTGTG-CGTTTCACATGTCACGTTGGAGAAAATC--TGANGACCGTTGATCNT-AG CCC C GAG GTCTGTG-CGTTTCAAATGTTACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC C GAG GTCTGTG-CGTTTCAAATGTTACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC C GAG GTCTGTG-CGTTTCAAATGTTACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC C GAG GTCTGTG-CGTTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC
C GAG GTCTGTG-CGTTTCAAATGTTACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC
C GAG GTCTGTG-CGTTTCACATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC
C GAG GTCTGTG-CGTTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC
C GAG GTCTGTG-CGTTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC
C GAG GTCTGTG-CGTTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC
C GAG GTCTGCG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC
C GAG GTCTGTG-CGTTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC
C GAG GTCTGTG-CGTTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC
C GAG GTCTGTG-CGTTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC
C GAG GTCTGTG-CGTTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC
M040 C GAG GTCTGTG-CGTTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC
WC248
WC364
WC367
WC483
WC493
WC555
WC556
WC557
WC581
WC582
WC583
WC659
C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATT--TGACGACCGTTGATCGT-AG CCC C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC C GAG GTCTGTG-CATTTCAAATGTTACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC C GAG GTCTGTG-CATTTCACATGTTACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC C GAG GTCTGTG-CGTTTCAAATGTTACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC C GAG GTCTGTG-CGTTTCAAATGTTACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC C GAG GTCTGTG-CGTTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC
C GAG GTCTGTG-CGTTTCAAATGTTACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC
C GAG GTCTGTG-CGTTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC
C GAG GTCTGTG-CGTTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC

| WC685 | C GAG GTCTGTG-CGTTTCAAATGTTACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC |
| :--- | :--- | :--- |
| WC808 | C GAG GTCTGTG-CATTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCGT-AG CCC |
| WC828 | C GAG GTCTGTG-CGTTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC |
| WC834 | C GAG GTCTGTG-CGTTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC |
| WC835 | C GAG GTCTGTG-CGTTTCAAATGTCACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC |
| WC836 | C GAG GTCTGTG-CGTTTCAAATGTTACGTTGGAGAAAATC--TGACGACCGTTGATCAT-AG CCC |
| G_sordulenta | C GAG GTGCGTGTCAAAATCAAGACGACGTTGCCCTCCATTAACAGCAGTCGTGACTTGTTAG CCC |

[66													$16]$
M001	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M002	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M003	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M00 4	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M005	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M006	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M007	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M008	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	T
M009	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M010	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	AC
M011	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M012	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M013	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M014	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M015	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M016	TAC AAC	GCA ACC	CTC TCC	GTG	CAT	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M017	TAC AAC	GCA ACC	CTC TCC	GTG	CAT	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M018	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M019	TAC AAC	GCA ACC	CTC TCC	GTG	CAT	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M020	TAC AAC	GCA ACC	CTC TCC	GTG	CAT	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M021	TAC AAC	GCA ACC	CTC TCC	GTG	CAT	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M029	TAC AAC	GCA ACC	СтС TCC	GTG	CAT	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M030	TAC AAC	GCA ACC	CTC TCC	GTG	CAT	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M031	TAC AAC	GCA ACC	CTC TCC	GTG	CAT	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M032	TAC AAC	GCA ACC	CTC TCC	GTG	CAT	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M033	TAC AAC	GCA ACC	CTC TCC	GTG	CAT	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M034	TAC AAC	GCA ACC	CTC TCC	GTG	CAT	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M035	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M036	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M037	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M038	TAC AAC	GCA ACC	CTC TCC	GTG	CAT	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M039	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
M040	TAC AAC	GCA ACC	CTC TCC	GTG	CAN	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
WC248	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
WC364	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
WC367	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
WC483	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
WC493	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
WC555	TAC AAC	GCA ACC	CTC TCT	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
WC556	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
WC557	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
WC581	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
WC582	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
WC583	TAC AAC	GCA ACC	CTC TCC	GTG	CAT	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
WC659	TAC AAC	GCA ACC	CTC TCC	GTG	CAN	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
WC685	TAC AAC	GCA ACC	CTC TCC	GTG	CAT	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
WC808	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
WC828	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
WC834	TAC AAC	GCA ACC	CTC TCC	GTG	CAT	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
WC835	TAC AAC	GCA ACC	CTC TCC	GTG	CAC	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
WC836	TAC AAC	GCA ACC	CTC TCC	GTG	CAT	CAA	CTG	GTC	GAG	AAC	TCT	GAT	GAG	ACT
G_sordulenta	TAC AAC	GCG ACA	CTC TCT	GTG	CAT	CAA	CTC	GTC	GAG	AAC	TCT	GAC	CAG	ACG

[
M001
M002
M003
M004
M005

TTC TGC ATT GAT AAC GAG GCA TTG TAC GAC ATT TGC TTC CGG ACA CTG AAG CTG TTC TGC ATT GAC AAC GAG GCC TTG TAC GAC ATT TGC TTC CGG ACA CTG AAG CTG TTC TGC ATT GAT AAC GAG GCC TTG TAC GAC ATT TGC TTC CGG ACA CTG AAG CTG TTC TGC ATT GAT AAC GAG GCC TTG TAC GAC ATT TGC TTC CGG ACA CTG AAG CTG
M005 TTC TGC ATT GAT AAC GAG GCC TTG TAC GAC ATT TGC TTC CGG ACA CTG AAG CTG

M006	TTC	tGC Att	GAT	AAC	GAG	GCC	tTG	tac	GAC	AtT	TGC	TTC	CGG	ACA	CTG	AG	TG	
M007	TTC T	tGC AtT	GAN	AAC	GAG	GCA	CTG	TAC	GAC	ATT	TGC	TTC	CGG	ACA	CTG A	AAG	CTG	
M008	TTC T	tGC AtT	GAT A	AAC	GAG	GCC	TTG	TAC	GAC	ATT	TGC	TTC	CGG	ACA	CTG A	AAG	CTG	
M009	TTC T	TGC ATT	GAT A	AAC	GAG	GCC	tTG	TAC	GAC	ATT	TGC	TTC	CGG	ACA	CTG A	AAG	CTG	
M010	TTC T	tGC AtT	GAT	AAC	GAG	GCA	CTG	TAC	GAC	ATt	tGC	TTC	CGG	ACA	CTG A	AAG	CTG	
M011	TTC T	tGC AtT	GAT A	AAC	GAG	GCC	ttg	tac	GAC	AtT	TGC	tTC	CGG	ACA	CTG A	G	CTG	
M012	TTC	tGC ATT	GAT	AAC	GAG	GCC	tTg	TAC	GAC	ATT	TGC	tTC	CGG	ACA	CTG A	AG	CTG	
M013	TTC	tGC Att	GAC	AAC	GAG	GCC	ttg	tac	GAC	ATT	TGC	tTC	CGG	ACA	TG A	AG	TG	
M014	TTC T	tGC Att	GAT	AAC	GAG	GCC	tTG	tac	GAC	ATT	TGC	tTC	CGG	ACA	TG	AAG	G	
M015	TTC T	tGC AtT	GAT	AAC	GAG	GCC	ttg	TAC	GAC	ATt	TGC	tTC	CGG	ACA	TG A	G	TG	
M016	TTC	tGC Att	GAT	AAC	GAG	GCA	CtG	tac	GAC	ATt	TGC	tTC	CGG	ACA	TG A	G	TG	
M017	C	tGC Att	GAT	AAN	GAG	GCA	CtG	tac	GAC	AtT	tGC	tTC	CGG	ACA	TG		G	
M018	T	tGC Att	GAT	AAC	GAG	GCA	CTG	tac	GAC	AtT	tGC	tTC	CGG	ACA	G	AAG	CTG	
M019	TC	tGC Att	GAT	AAC	GAG	GCA	CTT	tac	GAC	ATt	tGC	тTC	CGG	ACA	G		CTG	
M020	C	tGC Att	GAT	AAC	GAG	GCA	Стт	tac	GAC	ATT	tGC	tTC	CGG	ACA	G	G	CTG	
M021	T	tGC Att	GAT A	AAC	GAG	GCA	CTT	tac	GAC	Att	tGC	тTC	CGG	ACA	G	-	CTG	
M029	T	tGC Att	GAT A	AAC	GAG	GCG	CtG	tac	GAC	ATt	tGC	тTC	CGG	ACA	TG	AAG	CTG	
м030	T	TGC ATT	GAt	AAC	GAG	GCA	CTG	tac	GAC	ATt	tGC	тTC	CGG	ACA	TG	AAG	G	
M031	тTC	TGC ATt	GAt	AAC	GAG	GCA	CTG	tac	GAC	ATt	TGC	TTC	CGG	ACA	TG	G	G	
M032	C	TGC ATT	GAt A	AAC	GAG	GCG	CTG	tac	GAC	ATt	TGC	тTC	CGG	ACA	TG	G	G	
м033	T	TGC ATT	GAt	AAC	GAG	GCG	CTG	tac	GAC	ATT	TGC	тTC	CGG	ACA	G	G	G	
M034	TTC	tGC ATt	GAT A	AAC	GAG	GCG	CTG	tac	GAC	Att	tGC	tTC	CGG	ACA	CTG	G	G	
M035	C	tGC ATt	GAT A	AAC	GAG	GCT	TTG	TAC	GAC	AtT	GC	tTC	CGG	AC	CTG A	G	G	
M036	T	tGC ATt	GAt	AAC	GAG	GCN	CTG	tac	GAC	ATT	TGC	тT	CGG	ACA	CTG A	G	G	
M037	TTC	tGC ATt	GAT A	AAC	GAG	GCG	CTG	tac	GAC	ATT	TGC	tTC	CGG	AC	CTG A	G	G	
M038	T	tGC ATt	GAT A	AAC	GAG	GCA	CTG	TAC	GAC	AT	TGC	тT	CGG A	AC	CTG A	d	G	
M039	T	tGC ATt	GAT A	AAC	GAG	GCA	CTG	taC	GAC	At	TGC	тT	CGG A	AC	CTG A	AAG	G	
M040	T	tGC ATt	GAT A	AAC	GAG	GCN	CTG	taC	GA	AT	TGC	tT	CGG A	AC	CTG A	AAG	G	
WC248	T	TGC A	GAT A	AAC	GAG	GCA	CTG	tac	GA	ATT	TGC	тTC	GG	ACA	CTG A	d	G	
WC364	TTC	TGC A	GAT	AAC	GAG	GCC	TTG	TAC	GA	AtT	TGC	TT	GG	AC	CTG A	f	G	
WC367	T	TGC A	GAT	AAC	GAG	GCC	TTG	TAC	GA	ATT	TGC	TT	GG	AC	CTG A	f	CTG	
WC483	T	TGC A	GAT A	AAC	GAG	GCC	TTG	TAC	GAC	ATT	TGC	TT	CGG A	ACA	CTG A	G	CTG	
WC493	TTC	TGC A	GAT	AAC	GAG	GCG	CTG	tac	GA	AtT	TGC	TT	GG	ACA	CTG A	fr	G	
WC555	C	TGC A	GAT	AAC	GAG	GCA	CTG	TAT	GA	AT	TGC	TT	CGG	ACA	CTG A	f	G	
WC556	TTC T	tGC ATt	GAT A	AAC	GAG	GCG	CTG	TAC	GAC	AtT	TGC	тT	CGG	AC	CTG A	G	G	
WC557	TTC	tGC ATt	GAT	AAC	GAG	GCG	CTG	TAC	GAC	ATT	TGC	TT	CGG	AC	CT	G	G	
WC581	TTC	tGC ATt	GAt A	AAC	GAG	GCG	CTG	tac	GAC	AtT	TGC	TTC	CGG	ACA	CTG	G	G	
WC582	TTC T	TGC ATt	GAT	AAC	GAG	GCG	CTG	TAC	GAC	AtT	TGC	TTC	CGG	AC	CTG A	AAG	G	
WC583	TTC T	TGC ATt	GAT	AAC	GAG	GCG	CTG	TAC	GAC	Att	TGC	TTC	CGG	ACA	CT	G	G	
WC659	TTC	tGC Att	GAT A	AAC	GAG	GCN	CTG	TAC	GAC	ATt	TGC	tTC	CGG	ACA	CTG		G	
WC685	TTC	tGC Att	GAT	AAC	GAG	GCN	CTG	TAC	GAC	Att	TGC	tTC	CGG	ACA	CTG		G	
WC808	tTC	TGC ATt	GAN	AAC	GAG	GCC	TTG	tac	GAC	Att	TGC	тTC	CGG	ACA	CTG	AG	CTG	
WC828	TTC	tGC Att	GAT	AAC	GAG	GCG	CTG	tac	GAC	Att	TGC	тTC	CGG	ACA	CTG	G	CTG	
WC834	TTC T	TGC ATT	GAT	AAC	GAG	GCG	CTG	TAC	GAC	ATT	TGC	TTC	CGG	ACA	CTG	G	CTG	
WC835	TTC	TGC ATT	GAT	AAC	GAG	GCG	CTG	TAC	GAC	ATt	TGC	TTC	CGG	ACA	CTG	G	CTG	
WC836	TTC	TGC ATT	GAT	AAC	GAG	GCA	CTG	TAC	GAC	AtT	TGC	TTC	CGG	ACA		AAG	G	
G_sordulenta	tTC	TGC ATT	GAT	AAC	GAG	GCA	TT	TAT	GAT	ATA	TGC	TTC	AGA	C				
[171																	227]
M001	ACG A	ACA CCG	ACA	TAC	GGC	GAN	CTG	AAT	CAC	CTC	ATT	TCC	ATC	GTC	ATG	TCC	GGT	ATT
M002	ACG	ACA CCG	ACA	TAC	GGC	GAC	CTG	AAT	CAC	CTC	ATT	TCC	ATC	GTC	Arg	TCC	GGT	ATT
M003	ACG A	ACA CCG	ACA	TAC	GGC	GAC	CTG	AAT	CAC	CTC	AtT	TCC	ATC	GTC	AtG	TCC	GG	ATT
M004	ACG A	ACA CCG	ACA	TAC	GGC	GAC	CTG	AAT	CAC	CTC	AtT	TCC	ATC	GTC	ATG	TCC	GG	ATT
M005	ACG A	ACA CCG	ACA	TAC	GGC	GAC	CTG	AAT	CAC	CTC	ATT	TCC	ATC	GTC	ATG	TCC	GGT	ATT
M006	ACG A	ACA CCG	ACA	TAC	GGC	GAC	CTG	AAT	CAC	СтC	ATT	TCC	ATC	GTC	ATG	TCC	GGT	ATT
M007	ACG AcA	ACA CCG	ACA	TAC	GGC	GAT	CTG	AAt	CAC	CTC	AtT	TCC	ATC	GTC	ATG	TCC	GGT	ATT
м008	ACG A	ACA CCG	ACA	TAC	GGC	GAC	CTG	AAt	CAC	CTC	ATT	TCC	ATC	GTC	AtG	TCC	GGT	ATT
м009	ACG A	ACA CCG	ACA	TAC	GGC	GAC	CTG	AAT	CAC	СтC	ATT	TCC	ATC	GTC	AtG	TCC	GGT	ATT
M010	ACG A	ACA CCG	ACA	TAC	GGC	GAT	CTG	AAT	CAC	СтС	AtT	TCC	ATC	GTC	AtG	TCC	GGT	ATT
M011	ACG A	ACA CCG	ACA	TAC	GGC	GAC	CTG	AAT	CAC	CTC	ATT	TCC	ATC	GTC	ATG T	TCC	GGT	ATT
M012	ACG AcA	ACA CCG	ACA	TAC	GGC	GAC	CTG	AAT	CAC	CTC	ATT	TCC	ATC	GTC	ATG T	TCC	GGT	ATT
M013	ACG A	ACA CCG	ACA	TAC	GGC	GAC	CTG	AAT	CAC	СтC	ATT	TCC	ATC	GTC	AtG t	TCC	GGT	ATT
M014	ACG A	ACA CCG	ACA	TAC	GGC	GAC	CTG	AAT	CAC	CTC	ATT	TCC	ATC	GTC	ATG T	TCC	GGT	ATT
M015	ACG AcA	ACA CCG	ACA	TAC	GGC	GAC	CTG	AAT	CAC	CTC	ATT	TCC	ATC	GTC	ATG T	TCC	GGT	ATT
M016	ACG A	ACA CCG	ACA	TAC	GGC	GAT	CTG	AAC	CAC	СтC	ATT	TCC	ATC	GTC	AtG	TCC	GGT	AtT
M017	ACG A	ACA CCG	ACA	TAC	GGC	GAT	CTG	AAC	CAC	CTC	ATT	TCC	ATC	GTC	ATG T	TCC	GGT	ATT
M018	ACG AcA	ACA CCG	ACA	TAC	GGC	GAT	CTG	AAC	CAC	CTC	ATt	TCC	ATC	GTC	ATG	TCC	GGT	ATt
M019	ACG A	ACA CCG	ACA	TAC	GGC	GAT	CTG	AAC	CAC	CTC	ATC	TCC	ATC	GTC	Atg	C	GGT	ATT

M020
M021
M029
M030
M031
M032
M033
M034
M035
M036
M037
M038
M039
M040
WC248
WC364
WC367
WC483
WC493
WC555
WC556
WC557
WC581
WC582
WC583
WC659
WC685
WC808
WC828
WC834
WC835
WC836
G_sordulenta

ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATC TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATC TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATC TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATC TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATt ACG ACA CCG ACA TAC GGC GAC CTG AAT CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAT CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAC CTG AAT CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAC CTG AAT CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAC CTG AAT CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCC ACA TAT GGC GAT CTG AAC CAC CTC ATT TCC ATT GTC ATG TCC GGC ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATN TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAC CTG AAT CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC GGT ATT [228

284] M001 ACA ACT TGT TTG CGT TTC CCT GGT CAG TTG AAC TCC GAT CTC CGG AAG TTG GCT GTC M002 ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG TTG GCT GTC M003 ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG TTG GCT GTC M004 ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG TTG GCT GTC M005 ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG TTG GCT GTC M006 ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG TTG GCT GTC M007 ACA ACT TGT TTG CGT TTC CCT GGT CAG TTG AAC TCC GAT CTC CGG AAG TTG GCT GTC M008 ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG TTG GCT GTC M009 ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG TTG GCT GTC M010 ACA ACT TGT TTG CGT TTC CCT GGT CAG TTG AAC TCC GAT CTC CGG AAG TTG GCT GTC M011 ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG TTG GCT GTC M012 ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG TTG GCT GTC M013 ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG TTG GCT GTC M014 ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG TTG GCT GTC
M015
M016
M017
M018
M019
M020
M021
M029
M030
M031
M032
M033
M034
M035
M036
M037
M038
M039
ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC M040 ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC

WC248
WC364
WC367
WC483
WC493
WC555
WC556
WC557
WC581
WC582
WC583
WC659
WC685
WC808
WC828
WC834
WC835
WC836
G_sordulenta
[
M001
M002
M003
M004
M005
M006
M007
M008
M009
M010
M011
M012
M013
M014
M015
M016
M017
M018
M019
M020
M021
M029
M030
M031
M032
M033
M034
M035
M036
M037
M038
M039
M040
WC248
WC364
WC367
WC483
WC493
WC555
WC556
WC557
WC581
WC582
WC583
WC659
WC685
WC808

ACA ACT TGT TTG CGT TTC CCT GGT CAG TTG AAC TCC GAT CTC CGG AAG TTG GCT GTC ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG TTG GCT GTC ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG TTG GCT GTC ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAC CTC CGG AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG TTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG TTG GCT GTC ACG ACT TGC TTG CGT TTC CCT GGT CAG CTG AAT TCT GAC TTG CGG AAG TTG GCT GTC

285 Intron $6 \rightarrow \quad \leftarrow$ Intron 6 355]
AAC ATG GGTGA-GTTCTCACTT-GANNCCTTGTGACATGACACTTATCATTGACTGTTAAAAAAT-TA GTT
AAC ATG GGTGA-GTTCTCACTT-GATGCCTTGTGACATGACACTTATCATTGACTGTTAAAAATT-TA GTT AAC ATG GGTGA-GTTCTCACTT-GACGCCTTGTGACATGACACTTATCATTGACTGTTAAAAAAT-TA GTT AAC ATG GGTGA-GTTCTCACTT-GACGCCTTGTGACATGACACTTATCATTGACTGTTAAAAAAT-TA GTT AAC ATG GGTGA-GTTCTCACTT-GATGCCTTGTGACATGACACTTATCATTGACTGTTAAAAATT-TA GTT AAC ATG GGTGA-GTTCTCACTT-GACGCCTTGTGACATGACACTTATCATTGACTGTTAAAAAAT-TA GTT AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGACATGACACTTATCATTGACTGTTAAAAATT-TA GTT AAC ATG GGTGA-GTTCTCACTT-GACGCCTTGTGACATGACACTTATCATTGACTGTTAAAAATT-TA GTT AAC ATG GGTGA-GTTCTCACTT-GATGCCTTGTGACATGACACTTATCATTGACTGTTAAAAATT-TA GTT AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGACATGACACTTATCATTGACTGTTAAAAATT-TA GTT AAC ATG GGTGA-GTTCTCACTT-GACGCCTTGTGACATGACACTTATCATTGACTGTTAAAAAAT-TA GTT AAC ATG GGTGA-GTTCTCACTT-GACGCCTTGTGACATGACACTTATCATTGACTGTTAAAAAAT-TA GTT AAC ATG GGTGA-GTTCTCACTT-GATGCCTTGTGACATGACACTTATCATTGACTGTTAAAAATT-TA GTT AAC ATG GGTGA-GTTCTCACTT-GATGCCTTGTGACATGACACTTATCATTGACTGTTAAAAATT-TA GTT AAC ATG GGTGA-GTTCTCACTT-GANGCCTTGTGACATGACACTTATCATTGACTGTTAAAAATT-TA GTT AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGATATGACACTTATGATTGACTGTTGAAATTT-TA GTC AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGATATGACATTTATGATTGACTGTTGAAATTT-TA GTC AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGATATGACACTTATGATTGACTGTTAAAATTT-TA GTC AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGATATGACACTTATGATTGACTGTTGAAATTT-TA GTC AAC ATG GGTAA-GTTCTCACTT-GATTCCTTGTGATATGACACTTATGATTGACTGTTAAAATTT-TA GTC AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGATATGACACTTATGATTGACTGTTGAAATTT-TA GTC AAC ATG GGTGA-GTTCTCACTT-GATGCCTTGTGACATGACACTTATCATTGACTGTTAAAAATT-TA GTT AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGATATAACACTTATGATTGACTGTTAAAATTT-TA GTC AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGATATAACACTTATGATTGACTGTTAAAATTT-TA GTC AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGATATGACACTTATGATTGACTGTTGAAATTT-TA GTC AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGATATGACACTTATGATTGACTGTTAAAATTT-TA GTC AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGATATGACACTTATGATTGACTGTTGAAATTT-TA GTC AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGACATGACACTTATCATTGACTGTTAAAAATT-TA GTT AAC ATG GGTGA-GTTCTCACTT-GATGCCTTGTGACATGACACTTATCATTGACTGTTAAAAATT-TA GTT AAC ATG GGTGA-GTTCTCACTT-GATGCCTTGTGACATGACACTTATCATTGACTGTTAAAAATT-TA GTT AAC ATG GGTGA-GTTCTCACTT-GATGCCTTGTGACATGACACTTATCATTGACTGTTAAAAATT-TA GTT AAC ATG GGTGA-GTTTTCACTT-GATTCCTTGTGATATGGCACTTATGATTGACTGTTGAAATTC-TA GTC AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGATATGACACTTATGATTGACTGTTGAAATTT-TA GTC AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGATATGACACTTATGATTGACTGTCAAAATTT-TA GTC AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGATATGACACTTATGATTGACTGTCAAAATTT-TA GTC AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGATATAACACTTATGATTGACTGTTAAAATTT-TA GTC AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGATATGACACTTATGATTGACTGTCAAAATTT-TA GTC AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGATATGACACTTATGATTGACTGTTGAAATTT-TA GTC AAC ATG GGTAA-GTTCTCACTT-GATTCCTTGTGATATAACACTTATGATTGACTGTTAAAATTT-TA GTC AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGATATGACACTTATGATTGACTGTTGAAATTT-TA GTC AAC ATG GGTGA-GTTCTCACTT-GACGCCTTGTGACATGACACTTATCATTGACTGTTAAAAAAT-TA GTT

WC828
WC834
WC835
WC836
G_sordulenta
[
M001
M002
M003
M004
M005
M006
M007
M008
M009
M010
M011
M012
M013
M014
M015
M016
M017
M018
M019
M020
M021
M029
M030
M031
M032
M033
M034
M035
M036
M037
M038
M039
M0 40
wC248
wC364
WC367
WC483
WC493
WC555
WC556
WC557
WC581
WC582
WC583
WC659
WC685
WC808
WC828
WC834
WC835
WC836
G_sordulenta

AAC ATG GGTAA-GTTCTCACTT-GATTCCTTGTGATATAACACTTATGATTGACTGTTAAAATTT-TA GTC AAC ATG GGTGA-GTTCTCACTT-GATTCCTTGTGATATGACACTTATGATTGACTGTTGAAATTT-TA GTC
AAC ATG GGTAA-GTTCTCACTT-GATTCCTTGTGATATAACACTTATGATTGACTGTTAAAATTT-TA GTC
AAC ATG GGTAA-GTTCTCACTT-GATTCCTTGTGATATAACACTTATGATTGACTGTTGAAATTT-TA GTC
AAC ATG GGTAATGCTTTCCTTCAGACTGGCCTAGATGCGTT-TTTCTCATTCGATGTTTTCTTTTGCA GTT
356 406]
CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTN TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT GGT TTC GCG CCC TTG ACT GCG CCC TTC CCT CGT CTT CAT TTC TTC ATG ACC GGC TTC GCG CCT TTG ACC GCT
[
M001
M002
M003
M004
M005
M006

CGC GGC AGC CAG CAG TAC CGT GCT GTC ACT GTA CCC GAG CTG ACT CAA CAG ATG CGC GGC AGC CAG CAG TAC CGT GCT GTC ACT GTA CCC GAG CTG ACT CAA CAG ATG CGC GGC AGC CAG CAG TAC CGT GCT GTC ACT GTA CCC GAG CTG ACT CAA CAG ATG CGC GGC AGC CAG CAG TAC CGT GCT GTC ACT GTA CCC GAG CTG ACT CAA CAG ATG CGC GGC AGC CAG CAG TAC CGT GCT GTC ACT GTA CCC GAG CTG ACT CAA CAG ATG CGC GGC AGC CAG CAG TAC CGT GCT GTC ACT GTA CCC GAG CTG ACT CAA CAG ATG

M007	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CT	ACT	CAA	CAG	
M008	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	A	CAG	
M009	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	AG	ATG
M010	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M011	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M012	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	G
M013	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M014	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M015	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	G
M016	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M017	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M018	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M019	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M020	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	G
M021	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M029	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M030	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M031	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	G
M032	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M033	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M034	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M035	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M036	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M037	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M038	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M039	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
M040	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
WC248	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
WC364	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
WC367	CGC	GGC	AGC	CAA	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
WC483	CGC	GGC	AGC	CAA	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
WC493	CGC	GGC	AGC	CAG	CAG	TAT	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
WC555	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
WC556	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
WC557	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
WC581	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
WC582	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
WC583	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
WC659	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
WC685	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
WC808	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
WC828	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
WC834	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
WC835	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
WC836	CGC	GGC	AGC	CAG	CAG	TAC	CGT	GCT	GTC	ACT	GTA	CCC	GAG	CTG	ACT	CAA	CAG	ATG
G_sordulenta	CGG	GGT	AGC	CAG	CAA	TAC	CGC	GCG	GTC	ACC	GTC	CCT	GAG	CTG	ACG	CAG	CAA	ATG
[46																	$514]$
M001	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGC	CGA	TAC	CTC
M002	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGC	CGA	TAC	CTC
M003	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGC	CGA	TAC	CTC
M004	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGC	CGA	TAC	CTC
M005	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGC	CGA	TAC	CTC
M006	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGC	CGA	TAC	CTC
M007	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGC	CGA	TAC	CTC
M008	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGC	CGA	TAC	CTC
M009	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGC	CGA	TAC	CTC
M010	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGC	CGA	TAC	CTC
M011	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGC	CGA	TAC	CTC
M012	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGC	CGA	TAC	CTC
M013	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGC	CGA	TAC	CTC
M014	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGC	CGA	tac	CTC
M015	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGC	CGA	TAC	CTC
M016	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCN	GAC	CCC	CGG	CAT	GGG	CGA	TAC	CTG
M017	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGG	CGA	tac	CTG
M018	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGG	CGA	TAC	CTG
M019	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGG	CGA	TAC	CTG
M020	TTC	GAT	GCC	AAG	AAC	ATG	ATG	GCT	GCG	TCC	GAC	CCC	CGG	CAT	GGG	CGA	TAC	CTG

WC364	ACT	GTATGCAACATCC--TAGCACA-GAGCGTACCAATCTGATGTATCTGTTGCCTATTATATAG	GTT	GCC	GC
WC367	ACT	GTATGCAACATCC--TAGCACA-GAGCGTACCAATCTGATGTATCTGTTGCT--TTTTATAG	GTT	GCC	GC
WC483	ACT	GTATGCAACATCC--TAGCACA-GAGCGTACCAATCTGATGTATCTGTTGCT--TTTTATAG	GTT	GCC	GC
WC493	ACC	GTATGCGGCTCCCCCTATCACG-GAGCGTATCAATCTGATCTATTTGTTNCNTTTTTCATAG	GTT	GCC	GC
WC555	ACC	GTATGCGGCTCCCCTTATTACG-GAGCGTACCAATCTGATCTATTTGTTACATTTTTCATAG	GTT	GCC	GC
WC556	ACC	GTATGCGGCTCCCCTTATTACG-GAGCGTACCAATCTGATCTATTTGTTACGTTTTTCATAG	GTT	GCC	GC
WC557	ACC	GTATGCGGCTCCCCTTATTACG-GAGCGTACCAATCTGATCTATTTGTTACGTTTTTCATAG	GTT	GCC	GC
WC581	ACC	GTATGCGGCTCTCCTTATTACG-GAGCGTACCAATCTGATCTATTTGTTACGTTTTTCATAG	GTT	GCC	GC
WC582	ACC	GTATGCGGCTCCCCTTATTACG-GAGTGTACCAATCTGATCTATTTGTTACGTTTTTCATAG	GTT	GCC	GC
WC583	ACC	GTATGCGGCTCTCCTTATTACG-GAGCGTACCAATCTGATCTATTTGTTACATTTTTCATAG	GTT	GCC	GC
WC659	ACC	GTATGCGGCTCCCCTTATTACG-GAGCGTACCAATCTGATCTATTTGTTACNTTTTTCATAG	GTT	GCC	GC
WC685	ACC	GTATGCGGCTCTCCTTATTACG-GAGCGTACCAATCTGATCTATTTGTTACGTTTTTCATAG	GTT	GCC	GC
WC808	ACT	GTATGCAACATCC--TAGCACA-GAGCGTACCAATCTGATGTATCTGTTGCCTATTTTATAG	GTT	GCC	GC
WC828	ACC	GTATGCGGCTCTCCTTATTACG-GAGCGTACCAATCTGATCTATTTGTTACGTTTTTCATAG	GTT	GCC	GC
WC834	ACC	GTATGCGGCTCTCCTTATTACG-GAGCGTACCAATCTGATCTATTTGTTACATTTTTCATAG	GTT	GCC	GC
WC835	ACC	GTATGCGGCTCTCCTTATTACG-GAGCGTACCAATCTGATCTATTTGTTACATTTTTCATAG	GTT	GCC	GC
WC836	ACC	GTATGCGGCTCCCCNTATTACG-GAGCGTACCAATCTGATCTATTTGTTACATTTTTCATAG	GTT	GCC	GC
G_sordulenta	ACT	GTAGGTGTTAATGTTTCTTCT----GTGTTCCG-------TCATCTGAAACCTGTTCCATAG	GTT	GCT	GC

Appendix E: Sequence alignment of partial β-tubulin gene sequences from isolates of Grifola frondosa and related species

Sequence alignments were performed using the Clustal W algorithm (Higgins et al. 1991) in the MegAlign application of the Wisconsin Package (Genetics Computer Group, Madison, WI). Numbers at the top of each sequence block designate site location within the sequence alignment. Regions of exons are labeled and underlined for the first isolate (M001). Codons are shown in protein coding regions.

[
M004
M009
M030
M037
WC493
WC659
WC828
WC835
G_sordulenta
P_umbellatus_G02
G_lucidium
[
M004
M009
M030
M037
WC493
WC659
WC828
WC835
G_sordulenta
P_umbellatus_G02
G_lucidium
[
M00 4
M009
M030
M037
WC493
WC659
WC828
WC835
G_sordulenta
P_umbellatus_G02
G_lucidium
[
[M 004
M009
M030
M037
WC493
WC659

1 exon $6 \rightarrow$ 53]
AG CCC TAC AAC GCA ACC CTC TCC GTG CAC CAA CTG GTC GAG AAC TCT GAT GAG
AG CCC TAC AAC GCA ACC CTC TCC GTG CAC CAA CTG GTC GAG AAC TCT GAT GAG AG CCC TAC AAC GCA ACC CTC TCC GTG CAT CAA CTG GTC GAG AAC TCT GAT GAG AG CCC TAC AAC GCA ACC CTC TCC GTG CAC CAA CTG GTC GAG AAC TCT GAT GAG AG CCC TAC AAC GCA ACC CTC TCC GTG CAC CAA CTG GTC GAG AAC TCT GAT GAG AG CCC TAC AAC GCA ACC CTC TCC GTG CAN CAA CTG GTC GAG AAC TCT GAT GAG Ag CCC TAC AAC GCA ACC CTC TCC GTG CAC CAA CTG GTC GAG AAC TCT GAT GAG Ag CCC TAC AAC GCA ACC CTC TCC GTG CAC CAA CTG GTC GAG AAC TCT GAT GAG AG CCC TAC AAC GCG ACA CTC TCT GTG CAT CAA CTC GTC GAG AAC TCT GAC CAG AG CCC TAC AAC GCG ACG CTC TCG GTC CAC CAG CTC GTT GAA AAC TCG GAT GAG AG CCG TAC AAC GCC ACC CTC TCC GTT CAT CAG CTC GTT GAG AAC TCG GAC CAG

54
107]
ACT TTC TGC ATT GAT AAC GAG GCC TTG TAC GAC ATT TGC TTC CGG ACA CTG AAG
ACT TTC TGC ATT GAT AAC GAG GCC TTG TAC GAC ATT TGC TTC CGG ACA CTG AAG ACT TTC TGC ATT GAT AAC GAG GCA CTG TAC GAC ATT TGC TTC CGG ACA CTG AAG ACT TTC TGC ATT GAT AAC GAG GCG CTG TAC GAC ATT TGC TTC CGG ACA CTG AAG ACT TTC TGC ATT GAT AAC GAG GCG CTG TAC GAT ATT TGC TTC CGG ACA CTG AAG ACT TTC TGC ATT GAT AAC GAG GCN CTG TAC GAC ATT TGC TTC CGG ACA CTG AAG ACT TTC TGC ATT GAT AAC GAG GCG CTG TAC GAC ATT TGC TTC CGG ACA CTG AAG ACT TTC TGC ATT GAT AAC GAG GCG CTG TAC GAC ATT TGC TTC CGG ACA CTG AAG ACG TTC TGC ATT GAT AAC GAG GCA TTA TAT GAT ATA TGC TTC AGA ACC CTC AAG ACC TTC TGT ATT GAC AAC GAG GCG CTG TAC GAC ATC TGC TTC CGG ACA CTG AAG ACG TTC TGT ATC GAC AAC GAG GCG CTC TAC GAC ATC TGC TTC AGG ACG CTC AAG

108

161]
CTG ACG ACA CCG ACA TAC GGC GAC CTG AAT CAC CTC ATT TCC ATC GTC ATG TCC
CTG ACG ACA CCG ACA TAC GGC GAC CTG AAT CAC CTC ATT TCC ATC GTC ATG TCC CTG ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC CTG ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC CTG ACG ACA CCC ACA TAT GGC GAT CTG AAC CAC CTC ATT TCC ATT GTC ATG TCC CTG ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATN TCC ATC GTC ATG TCC CTG ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC CTG ACG ACA CCG ACA TAC GGC GAT CTG AAC CAC CTC ATT TCC ATC GTC ATG TCC CTC ACT ACA CCA ACT TAT GGT GAC CTT AAC CAC CTT GTA TCG ATT GTC ATG TCC CTG TCG ACA CCG ACA TAC GGG GAT CTC AAC CAC CTC GTT TCC ATT GTC ATG TCC CTT ACC ACG CCC ACA TAT GGT GAT CTC AAC CAC CTC GTC TCT ATT GTC ATG TCG

162

215]
GGT ATT ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG GGT ATT ACA ACT TGT TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGG AAG GGT ATT ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG GGT ATT ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG GGC ATT ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAC CTC CGG AAG GGT ATT ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG

WC828
P_umbellatus_G02
G_lucidium
[
M004
M009
M030
M037
WC493
WC659
WC828
WC835
G_sordulenta
P_umbellatus_G02
G_lucidium
[
M004
M009
M030
M037
WC493
WC659
WC828
WC835
G_sordulenta
P_umbellatus_G02
G_lucidium
[
M004
M009
M030
M037
WC493
WC659
WC828
WC835
G_sordulenta
P_umbellatus_G02
G_lucidium
[
M004
M009
M030
M037
WC493
WC659
WC828
WC835
G_sordulenta
P_umbellatus_G02
G_lucidium

WC828
WC835
G_sordulenta
P_umbellatus_G02
G_lucidium
M004
M009
M030
M037
WC493
WC659
WC828
G_sordulenta
P_umbellatus_G02
G_lucidium
M00 4
M009
M030
WC493
WC659
WC828
WC835
G_sordulenta
P_umbellatus_G02
G_lucidium
[
M009
M030
M037
WC493
WC659
WC828
G_sordulenta
P_umbellatus_G02
G_lucidium
[
M004
M009
M030
WC493
WC659
WC828
WC835
G_sordulenta
G_lucidium

GGT ATT ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AA GGT ATT ACA ACT TGC TTG CGT TTC CCT GGT CAG CTG AAC TCC GAT CTC CGA AAG GGT ATC ACG ACT TGC TTG CGT TTC CCT GGT CAG CTG AAT TCT GAC TTG CGG AAG GGT ATC ACG ACA TGC TTG CGT TTC CCT GGT CAG CTT AAC TCT GAC CTG CGT AAG GGT ATC ACG ACT TGC CTG CGT TTC CCT GGT CAG CTC AAC TCG GAC CTC AGG AAG

216 exon 6 exon $7 \rightarrow$ 267] TTG GCT GTC AAC ATG G GTA GTT CCC TTC CCC CGT CTC CAC TTC TTC ATG ACC TTG GCT GTC AAC ATG G GTA GTT CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT TTG GCT GTC AAC ATG G GTA GTC CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT TTG GCT GTC AAC ATG G GTA GTC CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT TTG GCT GTC AAC ATG G GTA GTC CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT TTG GCT GTC AAC ATG G GTA GTC CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT TTG GCT GTC AAC ATG G GTA GTC CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT TTG GCT GTC AAC ATG G GTA GTC CCC TTC CCC CGT CTC CAC TTC TTC ATG ACT TTG GCT GTC AAC ATG G GTA GTT CCC TTC CCT CGT CTT CAT TTC TTC ATG ACC CTC GCT GTC AAC ATG G GTA GTT CCC TTC CCT CGT CTC CAT TTC TTC ATG ACC TTG GCT GTC AAC ATG G GTA GTT CCC TTC CCT CGT CTT CAC TTC TTC ATG ACC

268 321] GGT TTC GCG CCC TTG ACT GCG CGC GGC AGC CAG CAG TAC CGT GCT GTC ACT GTA GGT TTC GCG CCC TTG ACT GCG CGC GGC AGC CAG CAG TAC CGT GCT GTC ACT GTA GGT TTC GCG CCC TTG ACT GCG CGC GGC AGC CAG CAG TAC CGT GCT GTC ACT GTA GGT TTC GCG CCC TTG ACT GCG CGC GGC AGC CAG CAG TAC CGT GCT GTC ACT GTA GGT TTC GCG CCC TTG ACT GCG CGC GGC AGC CAG CAG TAT CGT GCT GTC ACT GTA GGT TTC GCG CCC TTG ACT GCG CGC GGC AGC CAG CAG TAC CGT GCT GTC ACT GTA GGT TTC GCG CCC TTG ACT GCG CGC GGC AGC CAG CAG TAC CGT GCT GTC ACT GTA GGT TTC GCG CCC TTG ACT GCG CGC GGC AGC CAG CAG TAC CGT GCT GTC ACT GTA GGC TTC GCG CCT TTG ACC GCT CGG GGT AGC CAG CAA TAC CGC GCG GTC ACC GTC GGT TTC GCC CCT TTG ACT GCA CGT GGC AGC CAA CAA TAC CGT GCA GTC ACT GTG GGT TTT GCT CCC CTG ACC GCC CGC GGC AGC CAG CAG TAC CGT GCT GTC ACT GTT 322 375]
CCC GAG CTG ACT CAA CAG ATG TTC GAT GCC AAG AAC ATG ATG GCT GCG TCC GAC CCC GAG CTG ACT CAA CAG ATG TTC GAT GCC AAG AAC ATG ATG GCT GCG TCC GAC CCC GAG CTG ACT CAA CAG ATG TTC GAT GCC AAG AAC ATG ATG GCT GCG TCC GAC CCC GAG CTG ACT CAA CAG ATG TTC GAT GCC AAG AAC ATG ATG GCT GCG TCC GAC CCC GAG CTG ACT CAA CAG ATG TTC GAT GCG AAG AAC ATG ATG GCT GCG TCC GAC CCC GAG CTG ACT CAA CAG ATG TTC GAT GCC AAG AAC ATG ATG GCT GCG TCC GAC CCC GAG CTG ACT CAA CAG ATG TTC GAT GCC AAG AAC ATG ATG GCT GCG TCC GAT CCC GAG CTG ACT CAA CAG ATG TTC GAT GCC AAG AAC ATG ATG GCT GCG TCC GAT CCT GAG CTG ACG CAG CAA ATG TTC GAT GCC AAG AAC ATG ATG GCT GCG TCC GAC CCC GAG CTC ACG CAG CAG ATG TTC GAC GCG AAG AAC ATG ATG GCT GCG TCT GAC CCC GAG CTC ACG CAG CAG ATG TTC GAT GCT AAG AAC ATG ATG GCC GCC TCG GAC
$376 \quad \leftarrow$ exon 7 401]
CCC CGG CAT GGC CGA TAC CTC ACT GT CCC CGG CAT GGC CGA TAC CTC ACT GT CCC CGG CAT GGG CGA TAC CTG ACC GT CCC CGG CAT GGG CGA TAC CTG ACC GT CCC CGG CAT GGG CGA TAC CTG ACC GT CCC CGG CAT GGG CGA TAC CTG ACC GT CCC CGG CAT GGG CGA TAC CTG ACC GT CCC CGG CAT GGG CGA TAC CTG ACC GT CCC AGG CAT GGC CGC TAC CTC ACT GT CCC CGT CAC GGT CGC TAC CTG ACG GT CCG AGG CAC GGT CGT TAC CTC ACT GT

Appendix F: Results of genotype and nutrient experiments descripted in Chapter 4

Table 4.13. Crop cycles time (wk) showing spawn run time and primordia and fruitbody development of 23 isolates of Grifola frondosa grown on sawdust substrate supplemented with 20% nutrient at The Mushroom Research Center (Experiment \#1-\#4). For a graphic summary of this data see Figure 4.6.

A. Experiment \#1					
Isolates	Time (weeks) to complete stage of development				number of replicates ${ }^{\text {a }}$
	Spawn run	Primordia	Fruitbody	Total crop cycle	
WC828	5.0	3.0	2.0	10.0	15
WC835	6.5	2.5	2.0	11.0	15
WC836	6.0	3.0	2.0	11.0	15
WC659	16.0	- ${ }^{\text {b }}$	-	16.0	0
WC834	5.0	11.0	-	16.0	0
B. Experiment \#2					
Isolates	Spawn run	Primordia	Fruitbody	Total crop cycle	number of replicates
M040	6.0	3.0	2.0	11.0	15
M014	16.0	-	-	16.0	0
M007	16.0	-	-	16.0	0
M004	7.0	1.0	2.0	10.0	3
WC493	7.0	2.0	1.0	10.0	3
WC582	16.0	-	-	16.0	0
WC248	16.0	-	-	16.0	0
C. Experiment \#3					
Isolates	Spawn run	Primordia	Fruitbody	Total crop cycle	number of replicates
M036	4.0	3.0	2.0	9.0	15
M019	6.5	9.5	-	16.0	0
M013	10.0	2.0	2.0	14.0	5
M011	16.0	-	-	16.0	0
M009	7.0	2.0	2.0	11.0	2
M002	6.0	10.0	-	16.0	0
WC483	9.0	2.0	1.0	12.0	3
D. Experiment \#4					
Isolates	Spawn run	Primordia	Fruitbody	Total crop cycle	number of replicates
WC828	5.0	3.0	2.0	10.0	15
M015	5.0	3.0	3.0	11.0	15
M036	5.0	2.0	2.0	9.0	15
M037	4.0	3.0	3.0	10.0	15
M038	4.0	2.5	2.0	9.5	15
M039	4.0	2.0	2.0	8.0	15
M040	6.0	4.0	2.0	12.0	15

[^2]Table 4.14. Percentage biological efficiency (\%BE) and quality among 10 Grifola frondosa isolates grown on sawdust substrate supplemented with 20% nutrient evaluated in crops I and II of Experiment \#1 and \#4 at the Mushroom Research Center. For a graphic summary of this data see Figure 4.7 and 4.8.

A. Experiment \#1						
Isolates	Crop I		Crop II		Combined (Crop I \& II)	
	BE (\%)	Quality	BE (\%)	Quality ${ }^{\text {a }}$	BE (\%)	Quality
WC828	$35.4 \mathrm{a}^{\text {b }}$	1.3 a	33.5 a	1.4 a	34.5 a	1.4 a
WC835	22.1 b	2.9 b	21.2 b	3.0 b	21.7 b	3.0 b
WC836	21.4 b	1.2 a	24.8 ab	1.1 a	23.1 b	1.2 a
B. Experiment \#4						
Isolates	Crop I		Crop II		Mean (Crop I \& II)	
	BE (\%)	Quality	BE (\%)	Quality	BE (\%)	Quality
WC828	36.5 ab	1.3 a	40.5 a	1.1 a	38.5	1.2
M015	33.0 ab	3.4 c	30.1 b	3.0 b	31.6	3.2
M036	36.4 ab	1.3 a	42.6 a	1.2 a	39.5	1.3
M037	33.0 ab	1.4 a	38.5 a	1.3 a	35.8	1.4
M038	31.1 b	1.2 a	32.0 b	1.1 a	31.6	1.2
M039	34.9 ab	2.0 b	39.7 a	1.5 a	37.3	1.8
M040	37.6 a	1.2 a	40.2 a	1.1 a	38.9	1.2

${ }^{a}$ Quality rating based on scale of $1-4$ where 1 is highest quality and 4 is lowest quality.
${ }^{\mathrm{b}}$ Means in the same experiment in the same column followed by the same letter are not significantly different at the $\mathrm{P}=0.05$ level according to Tukey-Kramer HSD.

Table 4.15. Effect of selected nutrients (20% total), added alone or in combination to oak sawdust, on crop cycle time (weeks) for Grifola frondosa (WC828) grown at the Mushroom Research Center (Experiment \#5). For a graphic summary of this data see Figure 4.9.

Treatment	Selected nutrient supplements (\%)				Crop cycle time (weeks)			
	Wheat Bran	Millet	Rye	Corn meal	Spawn run	Primordia development	Fruitbody development	Total crop cycle
1	20	0	0	0	5.5	3.5	2.0	11.0
2	0	20	0	0	16.0	- a	-	16.0
3	0	0	20	0	6.0	3.0	2.0	11.0
4	0	0	0	20	16.0	-	-	16.0
5	10	10	0	0	7.0	3.0	2.0	12.0
6	10	0	10	0	4.0	3.5	2.5	10.0
7	10	0	0	10	11.0	2.0	2.0	15.0
8	0	10	10	0	11.0	2.0	2.0	15.0
9	0	10	0	10	16.0	-	-	16.0
10	0	0	10	10	10.0	3.0	2.0	15.0
11	6.7	6.7	6.7	0	6.5	3.0	2.0	11.5
12	6.7	6.7	0	6.7	8.0	2.5	2.0	12.5
13	6.7	0	6.7	6.7	7.0	3.5	2.0	12.5
14	0	6.7	6.7	6.7	12.0	2.0	2.0	16.0
15	5	5	5	5	8.0	3.5	2.0	13.5

[^3]Table 4.16. The effect of selected nutrients (20% total) on percentage biological efficiency (\%BE) and quality for isolate WC828 for crops I and II grown at the Mushroom Research Center (Experiment \#5). For a graphic summary of this data see Figure 4.10.

Treatment	Nutrient supplements (\%)				Crop I		Crop II		Combined (Crop I \& II)	
	Wheat Bran	Millet	Rye	Corn meal	BE (\%)	Quality ${ }^{\text {x }}$	BE (\%)	Quality	BE (\%)	Quality
1	20	0	0	0	26.8 bc ${ }^{\text {y }}$	1.5 ab	20.2 c	1.3 a	23.5 b	1.4 a
2	0	20	0	0	$0^{\text {z }}$	-	0	-	0	-
3	0	0	20	0	27.6 bc	1.7 abc	30.1 ab	1.7 ab	28.9 b	1.7 ab
4	0	0	0	20	0	-	0	-	0	-
5	10	10	0	0	32.3 ab	1.6 abc	35.6 ab	1.3 a	34.0 a	1.4 a
6	10	0	10	0	40.5 a	1.2 a	38.7 a	1.1 a	39.6 a	1.1 a
7	10	0	0	10	28.3 bc	2.7 cd	25.8 bc	3.0 c	27.1 b	2.8 b
8	0	10	10	0	12.3 d	3.0 d	22.9 c	2.3 bc	17.6 c	2.7 b
9	0	10	0	10	0	-	0	-	0	-
10	0	0	10	10	28.9 bc	2.6 cd	30.0 ab	2.4 bc	29.4 b	2.5 b
11	6.7	6.7	6.7	0	34.0 ab	1.3 ab	40.1 a	1.2 a	37.1 a	1.3 a
12	6.7	6.7	0	6.7	20.1 cd	2.8 d	18.3 c	3.1 c	19.2 c	3.0 b
13	6.7	0	6.7	6.7	26.4 bc	1.7 abc	27.1 bc	1.5 ab	26.7 b	1.6 ab
14	0	6.7	6.7	6.7	14.0 d	2.6 cd	15.8 c	2.9 c	14.9 c	2.8 b
15	5	5	5	5	27.5 bc	2.2 cd	25.2 bc	2.3 bc	26.3 b	2.3 b

${ }^{\times}$Quality rating based on scale of $1-4$ where 1 is highest quality and 4 is lowest quality.
${ }^{y}$ Means in the same column followed by the same letter are not significantly different at the $\mathrm{P}=0.05$ level according to TukeyKramer HSD.
z Treatments where no fruiting occurred (0) were eliminated from the analysis of variance.

Table 4.17. Effect of various levels of selected nutrients (wheat bran and millet) added to a sawdust (oak) substrate on crop cycle time (weeks) for Grifola frondosa (WC828) grown at the Mushroom Research Center (Experiment \#7 and 8). For a graphic summary of this data see Figure 4.11.

A. Experiment \#7 (20\% total nutrient level).						
Treatment	Selected nutrient supplements (\%)		Crop cycle time (weeks)			
	Wheat bran	Millet	Spawn run	Primordia development	Fruitbody development	Total crop cycle
1	0	20	16.0	- ${ }^{\text {a }}$	-	16.0
2	5	15	16.0	-	-	16.0
3	10	10	8.0	2.0	3.0	13.0
4	15	5	5.5	3.0	3.0	11.5
5	20	0	5.0	4.0	2.0	11.0
B. Experiment \#8 (30% total nutrient level).						
	Selected nutrient supplements (\%)		Crop cycle time (weeks)			
Treatment	Wheat bran	Millet	Spawn run	Primordia development	Fruitbody development	Total crop cycle
1	0	30	16.0	-	-	16.0
2	7.5	22.5	4.0	5.0	3.0	12.0
3	15	15	3.0	5.0	2.0	10.0
4	22.5	7.5	4.0	3.0	3.0	10.0
5	30	0	4.0	2.5	2.5	9.0

[^4]Table 4.18. Effect of various levels of selected nutrients (wheat bran and rye) added to a sawdust (oak) substrate on crop cycle time (weeks) for Grifola frondosa (WC828) grown at the Mushroom Research Center (Experiment \#10 and 11). For a graphic summary of this data see Figure 4.12.
A. Experiment \#10 (20% total nutrient level)

Treatment	Selected nutrient supplements (\%)		Crop cycle time (weeks)			
	Wheat bran	Rye	Spawn run	Primordia development	Fruitbody development	Total crop cycle
1	0	20	6.0	3.0	2.0	11.0
2	5	15	4.0	4.0	2.0	10.0
3	10	10	4.0	3.0	3.0	10.0
4	15	5	3.0	5.0	2.0	10.0
5	20	0	4.0	4.0	3.0	11.0
B. Experiment \#11 (30\% total nutrient level)						
	Selected nutrient supplements (\%)		Crop cycle time (weeks)			
Treatment	Wheat bran	Rye	Spawn run	Primordia development	Fruitbody development	Total crop cycle
1	0	30	10.0	2.0	2.0	14.0
2	7.5	22.5	3.0	1.0	6.0	10.0
3	15	15	5.0	3.0	2.0	10.0
4	22.5	7.5	3.0	2.0	3.0	8.0
5	30	0	4.0	2.0	3.0	9.0

Table 4.19. Effect of various levels of selected nutrients (wheat bran, millet and rye) added to a sawdust (oak) substrate on crop cycle time (weeks) for Grifola frondosa (WC828) grown at the Mushroom Research Center (Experiment \#12 and 13). For a graphic summary of this data see Figure 4.13.

A. Experiment \#12 (20\% total nutrient level)							
	Selected nutrient supplements (\%)			Crop cycle time (weeks)			
Treatment	Wheat bran	Millet	Rye	Spawn run	Primordia development	Fruitbody development	Total crop cycle
1	0	0	20	7.0	2.0	2.0	11.0
2	0	6.7	13.3	16.0	- a	-	16.0
3	0	13.3	6.7	16.0	-	-	16.0
4	0	20	0	16.0	-	-	16.0
5	6.7	0	13.3	5.0	3.0	2.0	10.0
6	6.7	6.7	6.7	6.5	3.0	2.0	11.5
7	6.7	13.3	0	16.0	-	-	16.0
8	13.3	0	6.7	6.0	2.0	2.0	10.0
9	13.3	6.7	0	6.0	3.0	2.0	11.0
10	20	0	0	5.0	4.0	2.0	11.0
B. Experiment \#13 (30\% total nutrient level)							
	Selected nutrientsupplements (\%)			Crop cycle time (weeks)			
Treatment	Wheat bran	Millet	Rye	Spawn run	Primordia development	Fruitbody development	Total crop cycle
1	0	0	30	8.0	3.0	2.0	13.0
2	0	10	20	8.0	3.0	2.0	13.0
3	0	20	10	8.0	4.0	3.0	15.0
4	0	30	0	16.0	-	-	16.0
5	10	0	20	5.0	2.0	3.0	10.0
6	10	10	10	6.0	2.0	4.0	12.0
7	10	20	0	7.0	3.0	2.0	12.0
8	20	0	10	4.0	2.0	3.0	9.0
9	20	10	0	5.0	2.0	3.0	10.0
10	30	0	0	4.0	2.0	3.0	9.0

[^5]Table 4.20. Percentage biological efficiency (\%BE) and quality for Grifola frondosa (WC828) grown on substrates containing various levels of selected nutrients (wheat bran and millet at 20% or 30% total) at the Mushroom Research Center (Experiment \#7 and 8). For a graphic summary of this data see Figure 4.14.
A. Experiment \#7 (20% total nutrient level)

Treatment	Selected nutrient supplements (\%)		BE (\%)	Quality ${ }^{\text {x }}$
	Wheat bran	Millet		
1	0	20	0.0	-
2	5	15	0.0	-
3	10	10	30.3NS ${ }^{\text {y }}$	1.6NS
4	15	5	30.1NS	1.9NS
5	20	0	23.4NS	1.8NS
B. Experiment \#8 (30\% nutrient level)				
Treatment	Selected nutrient supplements (\%)		BE (\%)	Quality
	Wheat bran	Millet		
1	0	30	0.0	-
2	7.5	22.5	$29.7 \mathrm{~b}^{\text {z }}$	2.9 b
3	15	15	40.2a	1.8a
4	22.5	7.5	30.2b	2.1 a
5	30	0	20.6 c	2.4 ab

${ }^{{ }^{x}}$ Quality rating based on scale of $1-4$ when 1 is highest quality and 4 is lowest quality.
${ }^{y} \mathrm{NS}=$ nonsignificant at $\mathrm{P}=0.05$.
z Means in the same experiment in the same column followed by the same letter are not significantly different at the $\mathrm{P}=0.05$ level according to Tukey-Kramer HSD.

Table 4.21. Percentage biological efficiency (\%BE) and quality for 5 treatments evaluated in two experiments (\#10 and 11) for the effect of various levels of selected nutrients (wheat bran and rye at 20% or 30% total) for Grifola frondosa (WC828) grown at the Mushroom Research Center. For a graphic summary of this data see Figure 4.15.

A. Experiment \#10 (20\% total nutrient level)				
Treatment	Selected nutrient supplements (\%)		BE (\%)	Quality ${ }^{\text {x }}$
	Wheat bran	Rye		
1	0	20	$30.3 \mathrm{~b}^{\text {y }}$	1.8NS ${ }^{\text {z }}$
2	5	15	39.7a	1.9NS
3	10	10	41.5a	1.3NS
4	15	5	39.0a	1.5NS
5	20	0	24.1b	1.7NS
B. Experiment \#11 (30\% total nutrient level)				
	Selected nutrient supplements (\%)			
Treatment	Wheat bran	Rye	BE (\%)	Quality
1	0	30	38.9a	2.0NS
2	7.5	22.5	40.8a	2.1NS
3	15	15	45.6a	2.0NS
4	22.5	7.5	36.5a	1.7NS
5	30	0	22.3 b	2.5NS

${ }^{\times}$Quality rating based on scale of $1-4$ when 1 is highest quality and 4 is lowest quality.
${ }^{y}$ Means in the same experiment in the same column followed by the same letter are not significantly different at the $\mathrm{P}=0.05$ level according to Tukey-Kramer HSD.
${ }^{z}$ NS $=$ nonsignificant.

Table 4.22. Percentage biological efficiency (\%BE) and quality for Grifola frondosa (WC828) grown on substrate supplemented with various levels of selected nutrients (wheat bran, millet and rye at 20% total) at the Mushroom Research Center (Experiment \#12). For a graphic summary of this data see Figure 4.16.

Treatment	Selected nutrient supplements (\%)			Crop I		Crop II		Mean (Crop I \& II)	
	Wheat Bran	Millet	Rye	BE (\%)	Quality ${ }^{\text {a }}$	BE (\%)	Quality	BE (\%)	Quality
1	0	0	20	$29.2 \mathrm{~b}^{\text {b }}$	$1.8 \mathrm{NS}^{\text {d }}$	25.3 b	1.9 NS	27.3	1.85
2	0	6.7	13.3	$0.0{ }^{\text {c }}$	-	0.0	-	0.0	-
3	0	13.3	6.7	0.0	-	0.0	-	0.0	-
4	0	20	0	0.0	-	0.0	-	0.0	-
5	6.7	0	13.3	36.1 a	1.6 NS	36.6 a	1.7 NS	36.4	1.65
6	6.7	6.7	6.7	38.5 a	1.4 NS	36.1 a	1.4 NS	0.0	-
7	6.7	13.3	0	0.0	-	0.0	-	37.3	1.4
8	13.3	0	6.7	42.0 a	1.3 NS	38.3 a	1.2 NS	40.1	1.25
9	13.3	6.7	0	32.9 ab	1.8 NS	30.2 ab	1.7 NS	31.5	1.75
10	20	0	0	24.4 b	1.6 NS	20.7 b	1.9 NS	22.6	1.75
	Total			33.9		31.2			

[^6]Table 4.23. Percentage biological efficiency (\%BE) and quality for Grifola frondosa (WC828) grown on substrate supplemented with various levels of selected nutrients (wheat bran, millet and rye at 30% total) at the Mushroom Research Center (Experiment \#13). For a graphic summary of this data see Figure 4.17.

[^7]
Literature Cited

Adachi, K., H. Nanba, M. Otsuka, and H. Kuroda. 1988. Blood pressurelowering activity present in the fruit body of Grifola frondosa (maitake). Chem. Pharmaceut. Bull. (Tokyo) 36:1000-1006.

Alexopoulos, C.J., C.W. Mims and M. Blackwell. 1996. Introductory Mycology. 4th ed. John Wiley \& Sons, New York.

Altschul, S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.

Anonymous. 1983. Production of medicinal Grifola polysaccharides. Nippon Beet Sugar MFG Co. Ltd. Japanese Kokai Tokkyo Koho Japanese Patent 58/36395 A2 [83/36395], 3 Mar. 1983, 6pp.

Anonymous. 1985. Production of the antitumor agent GF-1 from Grifola frondosa tokachiana. Nippon Beet Sugar MFG Co. Ltd. Japanese Kokai Tokkyo Koho Japanese Patent 60/58925 A2 [85/58925], 5 Mar. 1985, 8pp.

Arakawa, N., K. Enomoto, H. Mukohyama, K. Nakajima, O. Tanabe and C. Inagaki. 1977. Effect of basidiomycetes on plasma cholesterol in rats. Eiyo To Shokuryo 30:29-33.

Arora, D. 1986. Mushrooms Demystified: A Comprehensive Guide to the Fleshy Fungi. 2nd ed. Ten Speed Press, Berkeley.

Baldauf S.L. and W.F. Doolittle. 1997. Origin and evolution of the slime mold (Mycetozoa). Proc. Natl. Acad. Sci. USA 94:12007-12012.

Bessette, A.E., A.R. Bessette and D.W. Fischer. 1997. Mushrooms of Northeastern North America. 1st ed. Syracuse University Press, Syracuse, N.Y.

Breitenbach, J. and F. Kränzlin. 1991. Fungi of Switzerland: a contribution to the knowledge of the fungal flora of Switzerland. Lucerne : Verlag Mykologia, Switzerland.

Bremer, K. 1994. Branch support and tree stability. Cladistics 10:295-304.
Brown, D., Wensink, P. and Jordan, E. 1972. A comparison of the ribosomal DNAs of Xenopus laevis and Xenopus mulleri: Evolution of tandem genes. J. Mol. Biol. 63:57-73.

Bruns, T.D., T.J. White and J.W. Taylor. 1991. Fungal molecular systematics. Ann. Rev. Ecol. Syst. 22:525-564.

Chang, S.T. 1999. World production of cultivated edible and medicinal mushroom in 1997 with emphasis on Lentinus edodes (Berk.) Sing. in China. Internat. J. Medicinal Mushrooms 1:291-300.

Chang, S.T., J.A. Buswell and S. Chiu. 1993. Mushroom Biology and Mushroom Products. Chinese Univ. Press, Hong Kong.

Chen, X., C.P. Romaine, M.D. Ospina-Giraldo and D.J. Royse. 1999. A polymerase chain reaction-based test for the identification of Trichoderma harzianum biotypes 2 and 4, responsible for the worldwide green mold epidemic in cultivated Agaricus bisporus. Appl. Microbio. Biotech. 52:246250.

Cooley, R.N., R.F. M. van Gorcom, C.A.M.J.J. van den Hondel and C.E.Caten. 1991. Isolation of a benomyl-resistant allele of the β-tubulin gene from

Septoria nodorum and its use as dominant selectable marker. J. Gen. Microbiol. 137:2085-2091.

Corner, E.J.H. 1989. Ad Polyporaceas V. Nova Hedwigia Heft 96.
Dickson, J. 1785. Fasciculus Plantarum Crytogamicarum Britanniae. Londini: Nicol.

Donaldson, G.C., L.A. Ball, P.E. Axelrood and N.L. Glass. 1995. Primer sets developed to amplify conserved genes from filamentous ascomycetes are useful in differentiating Fusarium species associated with conifers. Appl. Environ. Microbiol. 61:1331-40.

Donk, M.A. 1974. Check List of European Polypores. Verhand kon. Nederl. Akad. Wetsch. Afd. Nat. II, 62.

Douglas, D.A. and D.J. Royse. 1986. Shiitake cultivation on sawdust: evaluation of selected genotypes for biological efficiency and mushrrom size. Mycologia 78:929-933.

Edlind, T.D., J. Li, G.S. Visvesvara, M.H. Vodkin, G.L. McLaughlin and S.L. Katiyar. 1996. Phylogenetic analysis of β-tubulin sequences from amitochondrial protozoa. Molec. Phylogenet Evol. 5:359-367.

Farr, D.F., G.F. Bills, G.P. Chamuris and A.Y. Rossman. 1989. Fungi on Plants and Plant Products in The United States. APS Press, St. Paul, Minn., USA.

Farris, J. S., M. Källersjö, A. G. Kluge, and C. Bult. 1995. Testing significance of incongruence. Cladistics 10:315-391.

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791.

Fries, E. 1821. Systema Mycologicum: Sistens Fungorum Ordines, Genera et Species, Huc U.S.que Cognitas, Quas ad Normam Methodi Naturalis Determinavit, Disposuit Atque Descripsit. v.1-4. Lundae : ex officina Berlingiana.

Geiser, D.M., F.M. Harbinski, and J.W. Taylor. 2000. Molecular and analytical tools for characterizing Aspergillus and Penicillium species at the intra- and interspecific levels. In: Samson, R.A. and J.I. Pitt. (ed.) Proceedings of the Third Aspergillus and Penicillium Workshop. Harwood Academic Press, Amsterdam.

Geiser, D.M., J.C. Friscad and J.W. Taylor. 1998a. Evolutionary relationships in Aspergillus section Fumigati inferred from partial β-tubulin and hydrophobin DNA sequences. Mycologia 90:8321-845.

Geiser, D.M., J.I. Pitt and J.W. Taylor. 1998b. Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proc. Natl. Acad. Sci. 95:388-393.

Gilbertson, R.L. and L. Ryvarden. 1987. North American Polypores. Fungiflora, Oslo, Norway.

Goldman, G. H., W. Temmernan, D. Jacobs, R. Contreras, M. VanMontagu and A. Herrera-Estrella. 1993. A nucleotide substitution in one of the β-tubulin genes of Trichoderma viride confers resistance to the antimiotic drug methyl benzimidazole-2-yl-carbamate. Mol. Gen. Genet. 73:73-80.

Gray, S.F. 1821. A Natural Arrangement of British Plants, According to Their Relations to Each Other As Pointed Out By Jussieu, De Candolle, Brown, \&C Including Those Cultivated For Use. With An Introduction to Botany, in Which
the Terms Newly Introduced Are Explained. Baldwin, Cradock and Joy, London.

Hasegawa, M., H. Kishino and T. Yano. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Molec. Evol. 22:160-174.

Hawksworth, D. L., Kirk, P. M., Sutton, B. C. and Pegler, D. N. 1995. Ainsworth \& Bisby's Dictionary of the Fungi. 8th ed. CAB Internat.

Heim, P. 1954. Observation sur le noyau des Basidiomycetes. Rev. Mycol. (Paris) 19:201-249.

Hibbett, D.S., L.B. Gilbert and M.J. Donoghue. 2000. Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407:506-508.

Hibbett, D.S., E.M. Pine, E. Langer, G. Langer, and M.J. Donoghue. 1997. Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences. Proc. Natl. Acad. Sci. USA. 94:12002-12006.

Hibbett, D.S., Y. Fukumasa-Nakai, A. Tsuneda, and M.J. Donoghue. 1995. Phylogenetic diversity in shiitake inferred from nuclear ribosomal DNA sequences. Mycologia 87:618-638.

Hibbett, D.S. and R. Vilgalys. 1993. Phylogenetic relationships of the basidiomycete genus Lentinus inferred from molecular and morphological characters. Syst. Bot. 18:407-433.

Hibbett, D.S. 1992. Towards a phylogenetic classification for shiitake: taxonomic history and molecular perspectives. Rept. Tottori Mycol. Inst. 30:30-42.

Higgins, D. G., A. J. Bleasby and R. Fuchs. 1991. CLUSTAL W: improved software for multiple sequence alignment. CABIOS 8:189-191.

Hills, D.M. and J.J. Bull. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42:182-192.

Hobbs, C. 1996. Medicinal Mushrooms : An Exploration of Tradition, Healing \& Culture. Botanica Press, Santa Cruz, CA.

Horinouchi, S., Y. Saitou and E. Takahashi. 1999. Gene encoding recombination type trehalose phosphorylase, vector containing the gene, transformant transformed with the gene and production of recombination type trehalose phosphorylase with the transformant. Patent: JP 1998276785-A 20-Oct.-1998; Kureha Chem. Ind. Co. Itd.

Huelsenbeck, J. P., J.J.Bull, and C.W. Cunningham. 1996. Combining data in phylogenetic analysis. Trends Ecol. Evol. 11:152-158.

Imazeki, R and T. Hong. 1989. Colored Illustrations of Mushroom of Japan. Vol I and II. Hoikusha, Tokyo.

Jodon, M.H. and D.J. Royse. 1979. Care and handling of cultures of the cultivated mushroom. The Pennsylvania Agricultural Experiment Station Bulletin No. 258. Pennsylvania State University, University Park, PA.

Jong, S.C. and J.M. Birmingham. 1990. The medicinal value of the mushroom Grifola Maitake. World J. Microbiol. Biotechnol. 6:227-235.

Jong, S.C., J.M. Birmingham and S.H. Pai. 1991. Immunomodulatory substances of fungal orgin EOS-J. Immunol. Immunopharmacol. 11:115-122.

Jülich, W. 1981. Higher Taxa of Basidiomycetes. Bibliotheca Mycologica 85, J. Cramer.

Kabir, Y., M. Yamaguchi and S. Kimura. 1987. Effect of shiitake (Lentinus edodes) and maitake (Grifola frondosa) mushrooms on blood pressure and plasma lipids of spontaneously hypertensive rats. J. Nutr. Sci. Vitaminol. 33:341-346.

Kawagishi, H. 1990. Isolation and characterization of a lectin from Grifola frondosa fruiting bodies. Biochimica et Biophysica acta : Internat. J. Biochem. Biophysi. 1034:247-252.

Kawagishi, H. 1995. Mushroom lectins. Fd. Rev. Internat. 11:63-68.

Kim, B.G. and Magae, Y. 1999. Development of a transformation system in Pleurotus ostreatus. (Unpublished). Direct submitted sequence, NCBI AF132911.

Kirchhoff, B. 1996. Investigations of genotypes and substrates for the fruitbody production of Grifola frondosa (Dicks.:Fr.). p437-441. In: Royse, D.J. (ed.) Mushroom Biology and Mushroom Products: Proceedings of the 2nd International Conference. Pennsylvania State University.

Koenraadt, H., S.C. Somerville and A.L. Jones. 1992. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field isolates of Venturia inaequalis and other plant pathogenic fungi. Phytopathology 82:1348-1354.

Kunitomo, Y. 1992. Sawdust-based cultivation of maitake. In Nishi, S. et al. (ed.) Cultivation and Breeding of Mushroom. [in Japanese] p229-239. Nougyo tosho Co. Ltd., Tokyo, Japan.

Kubo, K. and H. Nanba. 1997 Anti-hyperliposis effect of maitake fruit body (Grifola frondosa). I. Biol. Pharmaceuti. Bull. 20:781-785.

Lee, E. 1994. Production of shiitake, oyster and maitake mushrooms in Connecticut. Mushroom News (3):11-14.

Li, W. 1997. Molecular Evolution. Sinauer Associates, Inc., Sunderland, MA.

Li, W. and D. Graur. 1991. Fundamentals of Molecular Evolution. Sinauer Associates, Inc., Sunderland, MA.

Lincoff, G. 1981a. Guide to Mushrooms. Simon and Schuster, New York.
Lincoff, G. 1981b. The Audubon Society Field Guide to North American Mushrooms. Alfred A. Knopf, New York.

May, G. S., M.L.-S. Tsang, H. Smith, S. Fidel and N. R. Morris. 1987. Aspergillus nidulans beta-tubulin genes are unusually divergent. Gene 55:231-243.

Matsumoto, T. and I. Ohira. 1982. Some factors affecting the mycelial growth of Grifola frondosa in culture. Rep. Tottori Mycol. Inst. 20:140-147.

Matsuo, T, and Y. Yamamoto, H. Muraguchi and T. Kamada. 1999. Effects of amino-acid substitutions in beta tubulin on benomyl sensitivity and micotubule functions in Coprinus cinereus. Mycoscience 40:241-249. Direct submitted sequence. NCBI AB000116.

Mayuzumi, Y. and T. Mizuno. 1997. Cultivation methods of maitake (Grifola frondosa). Fd. Rev. Internat. 13:357-364.

Miyazaki, T., N. Oikawa, H. Yamada and T. Yadomae. 1978. Studies on fungal polysaccharides-XXII. Structural examination of antitumor, water-soluable glucans from Grifola umbellata by use of four types of glucanase. Carbohyd. Res. 65:235-243.

Mizuno, T., H. Saito, T. Nishitoba and H. Kawagishi. 1995. Antitumor-active substances from mushrooms. Fd. Rev. Internat. 11:23-61.

Mizuno, T. and C. Zhuang. 1995. Maitake, Grifola frondosa: pharmacological effects. Fd. Rev. Internat. 11:135-149.

Mizuno, T. and B-K. Kim. 1996. Ganoderma lucidum. II-Yang Pharm. Co. Ltd., Japan.

Nanba, H. 1993. Maitake mushrooms- the king of mushrooms. Mushroom News (2):22-25.

Neff, N.F., J.H. Thomas, P. Grisafi and D. Botstein. 1983. Isolation of the β tubulin gene from yeast and demonstration of its essential function in vitro. Cell 3:211-219.

Ni, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

Nobles, M.K. 1965. Identification of cultures of wood-inhabiting hymenomycetes. Canad. J. Bot. 43:1097-1139.

O'Donnell, K., H.C. Kistler, E. Cigelnik and R.C. Ploetz. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. 95:2044-2049.

Ohmasa, M. 1994. Mushroom production in Japan. Forestry and Forest Products Research Institute, Danchi-Nai, Ibaraki, Japan.

Ohnishi, Y., H. Yamazaki, K. Saito and S. Horinouchi. 1998. Direct Submission. Submitted (05-JAN-1998) to the DDBJ/EMBL/GenBank databases. Accession AB010105.

Oikawa, S., Y. Sato, T. Yadomae, N. Ono, M. Osawa and Y. Susuki. 1987. Antitumor Grifolan-N and its production by Grifola frondosa tokachiana. Japanese Kokai Tokkyo Koho Japanese Patent 62/209091 A2 [87/209091].

Orbach, M.J., E.B. Porro and C. Yanofski. 1986. Cloning and characterization of the gene for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Mol. Cell. Biol. 6:24522461.

Panaccione, D.G. and R.M. Hanau. 1990. Characterization of two divergent beta-tubulin genes from Colletotrichum graminicola. Gene 86:163-170.

Rajchenberg, M. and A. Greslebin. 1995. Cultural characters, compatibility tests and taxonomic remarks of selected polypores of the patagonian Andes forests of Argentina. Mycotaxon 56:325-346.

Royse, D.J. 1985. Effect of spawn run time and substrate nutrient on yield and size of the shiitake mushroom. Mycologia 77:756-762.

Royse, D.J. 1992. Recycling of spent shiitake substrate for production of the oyster mushroom, Pleurotus sajor-caju. Appl. Microbiol. Biotech. 38:179-182.

Royse, D.J. 1997. Specialty mushrooms and their cultivation. Hort. Rev.19:5997.

Royse, D.J. and B.D. Bahler. 1988. The effect of alfalfa hay and delayedrelease nutrient bon biological efficiency of Pleurotus sajor-caju. Mush. J. Tropics.8:59-65.

Royse D.J., B.D. Bahler and C.C. Bahler. 1990. Enhanced yield of shiitake by saccharide amendment of the synthetic substate. Appl. Environ. Microbiol. 56:479-482.

Russo, P., J.T. Juuti and M. Raudaskoski. 1992. Cloning, sequence and expression of a β-tubulin-encoding gene in the homobasidiomycete Schizophyllum commune. Gene 119:175-182.

Saccardo, P.A. and J.B. Traverso. 1882. Sylloge fungorum omnium hucusque cognitorum. Vol. XX. Patavii: Sumptibus auctoris.

Saito, K. 1998. Production of trehalose synthase from a basidiomycete, Grifola frondosa, in Escherichia coli. Appl. Microbiol. Biotech. 50:193-198.

SAS Institute. 1997. SAS User's Guide: Statistics. SAS Institute Statistical Analysis System, Cary, NC.

Singer, R. 1969. Mycoflora Australis. Lehre: Cramer.
Stamets, P. 2000. Growing Gourmet and Medicinal Mushrooms, 3rd ed. Ten Speed Press, Berkeley, CA.

Sullivan, K.F. 1988. Structure and utilization of tubulin isotypes. Annu. Rev. Cell Biol. 4:687-716.

Swofford, D. L. 2000. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), 4.0b4a. Sinauer Associates, Sunderland, MA.

Takama, F., S. Ninomiya, R. Yoda, H. Ishii, and S. Muraki. 1981. Parenchyma cells, chemical components of maitake mushroom (Grifola frondosa S.F. gray) cultured artificially, and their changes by storage and boiling. Mushroom Sci. 11:767-779.

Takeyama, T., I. Suzuki, N. Ohno, S. Oikawa, K. Sato, M. Ohsawa and T. Yadomae. 1987. Host-mediated antitumor effect of grifolan NMF-5N, a polysaccharides obtained from Grifola frondosa. J. Pharmacobio-Dynamics 10:644-651.

Thon, M.R. 1998. Evolutionary relationships among members of the genus Lentinula and other selected Basidiomycetes based on beta-tubulin and ribosomal DNA sequences. PhD Thesis, The Pennsylvania State University.

Thon, M.R. and D.J Royse. 1999a. Partial beta-tubulin gene sequences for evolutionary studies in the Basidiomycotina. Mycologia 91:468-474.

Thon, M.R. and D.J. Royse. 1999b. Evidence for two independent lineages of shiitake of the Americas (Lentinula boryana) based on rDNA and β-tubulin genes sequences. Mol. Phylogen. Evol. 13:520-524.

Taylor, J.W., D.J. Jacobson, S. Kroken, T. Kasuga, D. M. Geiser, D.S. Hibbett and M.C. Fisher. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Gen. Bio. 31:21-32.

Vilgalys, R. and B.L. Sun. 1994. Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences. Proc. NatI. Acad. Sci. USA. 91:45994603.

Webster, J. 1980. Introduction to Fungi. Cambridge University Press, Cambridge.

White, T., T. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. p315-322. In Innis et al., (ed.) PCR Protocols: A Guide to Methods and Applications. Academic Press, New York.

Wu, P. 1955. Shen Nong's Herbal. (200BC - 200 AD). Xing-Yan Sun and FengYi Sun. ed. (Qing Dynasty). Shang Wu Press, Shang Hai.

Yagishita, K., H. Jinnouchi, H. Yamamoto and T. Miyakawa. 1978. Effect of Grifola frondosa (maitake), Coriolus versicolor (Kawaratake), and Lentinus edodes (shiitake) on cholesterol metabolism in rats-II. Nibon Daigaku Nojuigakubu Gakujutsu Kenkyu Hokoko 35:28-40.

Yagishita, K., T. Miyakawa, H. Jinnouchi and H. Yamamoto. 1977. Effect of Grifola frondosa, Coriolus versicolor, and Lentinus edodes on cholesterol metabolism in rats-I. Nibon Daigaku Nojuigakubu Gakujutsu Kenkyu Hokoko 34:1-13.

Yamanaka, K. 1997. Production of cultivated edible mushrooms. Fd. Rev. Internat. 13:327-333.

Yarden, O. and T. Katan. 1993. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field isolates of Botrytis cinera. Phytopathology 83:1478-1483.

Yao,Y., D.N. Pegler, and M.W. Chase. 1998. Application of ITS (nrDNA) sequences in the phylogenetic study of Tyromyces s. I. (Coriolaceae). Unpublished.

Ying, J., X. Mao, Q. Ma, Y. Zong and H. Wen. 1987. Icones of Amedicinal Fungi from China. Translated by Y. Xu. Science press, Beijing.

Yoshizawa, N., T. Itoh, J. Takemura, S. Yokota and T. Idei. 1997. Mushroom cultivation using maitake [Grifola frondosa (Fr.) S.F.Gray] cultural wastes. Bull. Utsunomiya Univ. Forests 33:109-116.

Wang, H., T-B Ng and V.E.C Ooi. 1998. Lectins from mushrooms. Mycol. Res. 102:897-906.

White, T., T. Bruns, S. Lee and J. Taylor 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp 315-322. In: PCR Protocols. M. Innis, D. Gelfand, J. Sninsky and T. White (eds.) San Diego, Academic Press.

Zhao, Ji-Ding and X. Zhang. 1992. The Polypores of China. Bibliotheca Mycologica. J. Cramer, Berlin.

Zhao, Z.G., X.L. Yang, and Z.M. Li. 1983. The cultivation of Polyporus frondosa. Edible Fungi 5:8-9.

Vita

Qing Shen

EDUCATION

June 1998-Present. Ph.D. Candidate. Department of Plant Pathology, The Pennsylvania State University, University Park, PA.
August 1991-July 1994. M.S. Microbiology. Department of Microbiology, Nankai University, Tianjin, P.R. China.
August 1987-July 1991. B.S. Microbioloy. Department of Biology, Nankai University, Tianjin, P.R. China.

AWARDS AND MEMBERSHIP

James P. Roberts Scholarship, 2000. The Pennsylvania State University.
Wang Ke-Chang and Guang Hua Scholarships, 1990-1993. Nankai University
Mycological Society of America. 1998-present.
World Society for Mushroom Biology and Mushroom Products, 2000-present.

EXPERIENCE

Research Assistant. May 1998-May 2001. Department of Plant Pathology, The Pennsylvania State University, PA
Teaching Assistant. August 2000-December 2000. Department of Plant Pathology, The Pennsylvania State University, PA
Research Assistant. July 1994-May 1998. Tianjin Research Center for Agricultural Biotechnology, Tianjin, China.
Teaching Assistant. August 1992-January 1993. Department of Microbiology, Nankai University, Tianjin, China.

PUBLICATIONS

Shen, Q. and D.J. Royse. 2000. Effects of germplasm on mushroom growth, biological efficiency, and yield of maitake. The 2000 Mycological Society of America Annual Meeting. Burlington, VT. (Abstr.)
Shen, Q. and D.J. Royse. 2000. Molecular phylogenetic analysis of Grifola based on internal transcribed spacer ribosomal DNA sequences. The 2000 Mycological Society of America Annual Meeting. Burlington, VT. (Abstr.)
Chen, X.W., Q. Shen, and H. Fan. 1998. Study on selection of spore high-yielding strain of Ganoderma lucidum and its spore-releasing pattern. Acta Scientiarum Naturalium Universitatis Nankaiensis 31:109-112.

PRESENTATIONS

Shen, Q. 2000. Maitake germplasm and the effects of selected nutrient supplements on mushroom yield. 10th Specialty Mushroom Workshop, University Park, PA.
Shen, Q. 2000. Cultivation and molecular systematics of Lentinula edodes. The Pennsylvania State University, University Park, PA.
Shen, Q. 1999. Ganoderma spp. - pharmacology, phytopathology and systematics. The Pennsylvania State University, University Park, PA.

[^0]: *. Russo et al. 1992.

[^1]: ${ }^{\text {a }}$ Alignments including 51 sequences of G. frondosa and G. sordulenta.

[^2]: ${ }^{\text {a }}$ Number of replicates (bags) producing mushrooms.
 b - = Primordia and/or fruitbodies did not develop.

[^3]: ${ }^{\mathrm{a}}$ - = Primordia and/or fruitbodies did not develop.

[^4]: ${ }^{\text {a }}$ - = Primordia and/or fruitbodies did not develop.

[^5]: ${ }^{\text {a }}$ - = Primordia and/or fruitbodies did not develop.

[^6]: ${ }^{\text {a }}$ Quality rating based on scale of $1-4$ when 1 is highest quality and 4 is lowest quality.
 ${ }^{b}$ Means in the same experiment in the same column followed by the same letter are not significantly different at the $\mathrm{P}=0.05$ level according to Tukey-Kramer HSD.
 ${ }^{\text {c }}$ Treatments where no fruiting occurred (0.0) were eliminated from the analysis of variance.
 ${ }^{d}$ NS $=$ nonsignificant.

[^7]: ${ }^{\text {a }}$ Quality rating based on scale of $1-4$ when 1 is highest quality and 4 is lowest quality.
 ${ }^{b}$ Means in the same experiment in the same column followed by the same letter are not significantly different at the $P=0.05$ level according to Tukey-Kramer HSD.
 ${ }^{c}$ Treatments where no fruiting occurred (0) were eliminated from the analysis of variance.

